期刊文献+

采用支持向量机的网络流量预测研究 被引量:1

原文传递
导出
摘要 为了提高流量预测准确性,将支持向量机回归应用于网络流量预测。介绍了支持向量机回归建模的关键因素,并将该模型应用于实际网络流量预测计算,同时与BP神经网络模型进行比较。结果表明,支持向量机回归模型具有更好的抗噪能力、泛化推广能力以及更高的预测精度,能够很好地预测网络流量。
作者 白志中
出处 《计算机与信息技术》 2009年第10期45-48,共4页 Computer & Information Technology
基金 国家综合业务网理论及关键技术重点实验室开放基金(ISN-9-08)
  • 相关文献

参考文献6

二级参考文献45

  • 1董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 2姬水旺,姬旺田.支持向量机训练算法的实验比较[J].计算机应用研究,2004,21(11):18-20. 被引量:5
  • 3王建新,肖雪峰,高文宇.小时间粒度网络流量自回归预测分析[J].计算机工程与应用,2005,41(26):129-132. 被引量:5
  • 4吕军,李星.自适应网络流量线性预测算法及应用[J].计算机应用研究,2005,22(12):237-240. 被引量:7
  • 5王叔子.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992..
  • 6Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 7Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 8Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 9Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 10Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.

共引文献501

同被引文献13

  • 1苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 2Chen M. Short-term forecasting model of web traffic based on genetic algorithm and neural network[C]//2011 2nd International Conference on Artificial Intelligence. Las Vegas, Nevada, USA: Management Scienceand Electronic Commerce, 2011: 623-626.
  • 3Tan Y, Qin X, Jia Z, et al. An improved method of traffic forecasting based on Tariff-SASVR[C]//2009 Fifth International Conference on Natural Computation. Tianjin, China: IEEE Computer Society, 2009: 463-467.
  • 4Li X, Lu J, Ding L, et al. Building cooling load forecasting model based LS-SVM[C]//2009 Asia-Pacific Conference on Information Processing. Shenzhen, China: Information Processing APCIP, 2009: 55- 58.
  • 5Wang J, Peng Y, Peng X. Mobile communication traffic forecast based on a new fuzzy model[C]//IEEE International Instrumentation and Measurement Technology Conference I2MTC'09 IEEE. Singapore: Instrumentation and Measurement Technology Conference, 2009: 872- 877.
  • 6Asif M T, Dauwels J, Goh C Y, et al. Unsupervised learning based performance analysis of n-support vector regression for speed prediction of a large road network[C]//2012 15th International IEEE Conference on Intelligent Transportation Systems. Anchorage, USA: Intelligent Transportation Systems (ITSC), 2012: 983-988.
  • 7Wei X. Supporting vector-machine prediction of network traffic[C]//2011 International Conference on Electrical and Control Engineering. Yichang, China: Electrical and Control Engineering (ICECE), 2011: 3203-3206.
  • 8Wang R, Kwong S, Chen D. A new method for multi-class support vector machines by training least number of classifiers[C]//Proceedings of the 2011 International Conference on Machine Learning and Cybernetics. Melbourne, Australia: Machine Learning and Cybernetics (ICMLC), 2011: 648-659.
  • 9张颖璐.基于遗传算法优化支持向量机的网络流量预测[J].计算机科学,2008,35(5):177-179. 被引量:47
  • 10柴佳林,简银,刘兴伟.一种基于支持向量机的IP网络流量预测方法[J].西华大学学报(自然科学版),2010,29(1):54-57. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部