期刊文献+

基于遗传蚁群混合算法的网格任务调度研究 被引量:3

原文传递
导出
摘要 一个好的任务调度算法能高效分配网格资源,有效降低任务总执行时间,从而提高网格的性能。本文结合遗传算法和蚁群算法的各自优点,对遗传算法和蚁群算法进行融合并应用于网格环境中的任务调度中,仿真实验结果表明,应用遗传蚁群算法进行网格任务调度中可以减少任务总完成时间,系统负载均衡性好,任务调度效率高。
出处 《计算机与信息技术》 2010年第6期53-55,共3页 Computer & Information Technology
基金 内蒙古自治区自然科学基金资助项目(编号:20080404ms0903)
  • 相关文献

参考文献6

二级参考文献36

  • 1杨勇,蔡自兴,付鹰,刘美琴.基于遗传算法的自适应网格任务调度方法[J].计算机工程与应用,2005,41(1):48-50. 被引量:8
  • 2许智宏,孙济洲.用蚂蚁算法进行网格任务调度的研究[J].计算机应用,2005,25(10):2236-2237. 被引量:6
  • 3马学彬,温涛,郭权,王刚.一种基于遗传算法的网格任务调度算法[J].东北大学学报(自然科学版),2007,28(7):973-977. 被引量:8
  • 4Naik V K,Garbacki P,Kummamuru K,et al.On-line evolutionary resource matching for job scheduling in heterogeneous grid environments[J].Parallel and Distributed Systems,2006.ICPADS 2006.12th International Conference on Volume 2006,2(12-15):6.
  • 5Lihua Ai,Siwei Luo.Grid Locality Enhanced by Job Schedule.Grid and Cooperative Computing,2007.GCC 2007.Sixth International Conference on Aug.2007 (16-18):462-466.
  • 6Xiao rong W,Tie jun W.Ant Colony Optimization for Intelligent Scheduling[C]//In:Proceedings of the 4th World Congress on Intelligent Control and Automation,Shanghai,2002,1(1):66-70.
  • 7Rajkumar Buyya,Manzur Murshed.Gridsim:A Toolkit for the Modeling and Simulation of Distributed Resource Management and Scheduling for Grid Computing[J].The Journal of Concurrency and Computation:Pratice and Experience(CCPE),2002,14:1175-1142.
  • 8Marco Dorigo, Gambardella, Luca Maria. Ant colonies for the traveling salesman problem. Biosystems, 1997, 43(2): 73~81.
  • 9Marco Dorigo, Gambardelh, Luca Maria. Ant colony system: A cooperative learning approach to the traveling salesaum problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53~66.
  • 10Marco Dorigo, Eric Bonabeau, Theranlaz Guy. Ant algorithms and stigmergy. Future Generation Computer System, 2000, 16(8) : 851~871.

共引文献404

同被引文献22

  • 1林剑柠,吴慧中.基于遗传算法的网格资源调度算法[J].计算机研究与发展,2004,41(12):2195-2199. 被引量:70
  • 2熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分[J].软件学报,2005,16(4):503-512. 被引量:87
  • 3师凯,蔡延光,邹谷山,王涛.分段蚁群算法在运输调度问题中的应用[J].广东工业大学学报,2006,23(1):71-76. 被引量:4
  • 4马学彬,温涛,郭权,王刚.一种基于遗传算法的网格任务调度算法[J].东北大学学报(自然科学版),2007,28(7):973-977. 被引量:8
  • 5寇晓丽 刘三阳 郑巍.一种基于模块度分簇的改进蚁群算法求解大规模TSP问题.电子学报,2009,33(5):125-130.
  • 6Jadeja Y, Modi K. Cloud computing-concepts, architecture and challenges [ C ] // Proceedings of the International Con- ference on Computing, Electronics and Electrical Technolo-gies. India:IEEE, 2012:877-880.
  • 7Mollah M B, Islam K R, Islam S S. Next generation of computing through cloud computing technology [ C ]//Pro- ceedings of the IEEE Canadian Conference on Electrical and Computer Engineering. Montreal QC : IEEE, 2012:67- 72.
  • 8Islam S S, Mollah M B, Huq M I, et al. Cloud computing for future generation of computing technology [ C ] //Pro- ceedings of the IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems. Bangkok : IEEE, 2012 : 129-134.
  • 9Li K, Xu G C, Zhao G Y, et al. Cloud task scheduling based on load balancing ant colony optimization[ C ] //Pro- ceedings of the Sixth Annual ChinaGrid Conference. Lia- oning: IEEE,2011:266-270.
  • 10Zhao W, Peng Y, Xie F, et al. Modeling and simulation of cloud computing: a review [ C ] // Proceedings of the IEEE Asia Pacific Cloud Computing Congress. Shenzhen: IEEE, 2012:20-24.

引证文献3

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部