期刊文献+

带积分边值条件的分数阶微分方程解的存在性 被引量:1

Existence of Solutions for Fractional Differential Equation with Integral Boundary Value Condition
下载PDF
导出
摘要 用Banach压缩映像原理和Schauder不动点定理,讨论带分数阶边值条件的一类非线性项包含低阶分数阶导数的分数阶微分方程,证明其解的存在唯一性,并给出应用实例. By using the Banach contraction mapping principle and the Schauder's fixed point theorem,we discussed a fractional differential equation with a class of nonlinear terms depending upon fractional derivative of lower order under fractional integral boundary condition,proved the existence and uniqueness of its solution,and gave some application examples.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第2期197-202,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11371364)
关键词 分数阶导数 分数阶积分 边值问题 不动点定理 fractional derivative fractional integral boundary value problem fixed point theorem
  • 相关文献

参考文献3

二级参考文献24

  • 1WU Yongyan, WANG Chun, LIAO Shijun. Solving the One Loop Soliton Solution of the Vakhnenko Equation by Means of the Homotopy Analysis Method [J]. Chaos, Solitons ~ Fractals, 2004, 23(5) : 1733-1740.
  • 2SONG I.ina, ZHANG Hongqing. Application of Homotopy Analysis Method to Fractional KdV-Burgers- Kuramoto Equation[J].Phys Lett A, 2007, 367(1/2): 88-94.
  • 3Lesnic D. The Decomposition Method for Initial Value Problems [J]. Appl Math Comput, 2006, 181(1): 206-213.
  • 4Jafari H, Daftardar-Gejji V. Solving a System of Nonlinear Fractional Differential Equations Using Adomain Decomposition [J]. J Comput Appl Math, 2006, 196(2): 644-651.
  • 5Odibat Z, Momani S. Modified Homotopy Perturbation Method: Application to Quadratic Riccati Differential Equation of Fractional Order[J]. Chaos, Solitons & Fractals, 2008, 36(1) : 167-174.
  • 6Momani S, Odibat Z. Numerical Comparison of Methods for Solving Linear Differential Equations of Fractional Order [J]. Chaos, Solitons & Fractals, 2007, 31(5) : 1248-1255.
  • 7Odibat Z M, Shawagfeh N T. Generalized Taylor's Formula [J]. Appli Math Comput, 2007, 186(1): 286-293.
  • 8Shokrollahi F, Kilicman A. Pricing Currency Option in a Mixed Fractional Brownian Motion with Jumps Environment [J/OL]. Math Probl Eng, 2014-04-03. http://dx, doi, org/10. 1155/2014/858210.
  • 9Shokrollahi F, Kilicman A. Actuarial Approach in a Mixed Fractional Brownian Motion with Jumps Environment for Pricing Currency Option [J/OL]. Adv Difference Equ, 2015-08-19. doi: 10. 1186/s13662-015-0590-8.
  • 10XIANG Kaili, ZHANG Yindong, MAO Xiaotong. Pricing of Two Kinds of Power Options under Fractional Brownian Motion, Stochastic Rate, and Jump-Diffusion Models [J/OL]. Abstr Appl Anal, 2014-10-21. http://dx, doi. org/10. 1155/2014/259297.

共引文献4

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部