期刊文献+

带有无限时滞随机发展方程的Khasminskii-型定理

Khasminskii-Type Theorems for Stochastic Evolution Equations with Infinite Delay
下载PDF
导出
摘要 利用Lyapunov型条件和截断技术,考虑带有无限时滞的随机发展方程全局解的存在性,得到了带有无限时滞随机发展方程的Khasminskii-型定理. By using the Lyapunov-type condition and the truncation technique,we considered the existence of global solutions for stochastic evolution equations with infinite delay,and obtained Khasminskii-type theorems for stochastic evolution equations with infinite delay.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第2期215-218,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11271151)
关键词 随机发展方程 无限时滞 全局解 线性增长条件 stochastic evolution equation infinite delay global solution linear growth condition
  • 相关文献

参考文献1

二级参考文献14

  • 1ArnOld L. Stochastic Differential Equations: Theory and Applications[M]. New York:John Wiley and Sone. 111-115.
  • 2Bahar A, Mao X. Stochastic delay Lotaka-Volterra model[J]. Journal Mathematical Analysis and Applications, 2004,292 : 364 - 380.
  • 3Bahar A, Mao X. Stochastic delay population dynamcis[J]. International Journal of Pure and Applied Mathematics, 2004,11 : 377-400.
  • 4Blythe S,Mao X,Shah A. Razumikhin-type theorems on stability of stochastic neural networks with delays[J]. Stochastic Analysis and its Application, 2001,19 ( 1 ) : 85 - 101.
  • 5Fang S,Zhang T. A study of a class of stochastic differential equations wiht non-Lipschitzian coefficients [J]. Probability Theory and Related Fields,2005,132: 356-390.
  • 6Friedman A. Stochastic Differential Equations and Applications, Vol. 1 and 2[M]. New York: Academic Press.
  • 7Ikeda I,Watanabe S. Stochastic Differential Equations and Diffusion Processes[M]. North-Holland:Amsterdam, 1981.
  • 8Khasminskii R Z. Stochastic Stability of Differential Equations[M]. Alphen:Sijtjoff and Noordhoff(translation of the Russian edition. Moscow:Nauka), 1969.
  • 9Mao X. Exponential Stability of Stochastic Differential Equations[M]. Dekker, 1994.
  • 10Mao X. Stochatie Differential Equations and Aplications[M]. Horwood,1997.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部