摘要
周期性带容量限制的弧路径问题已成为现实生活中路径优化方面很普遍的问题,因此,研究该问题具有很重要的意义。文章研究的主要内容是多周期带容量限制的弧路径优化模型,以洒水车服务道路为例,将车场和路线的组成看作无向网络,在相关假设前提下,考虑道路需求次数,车辆容量,车辆最长服务时间,周期时长等约束条件,建立了以所有周期所有车辆的服务总时间最短为目标的优化模型。最后运用LINGO软件对实例进行了计算,验证了模型的正确性和有效性,并对计算结果进行了分析。
Periodic capacitated arc routing problem has become a common optimization problem in real life, therefore,the study about the problem has very important significance.The main content of the study is the optimization model of periodic capacitated arc routing problem, sprinkler service is taken as an example and treat the combination of the station and route as an undirected network. Under the relevant assumptions, some constraints what is demand roads number,vehicle capacity, vehicle service time and the longest cycle time are considered, the model is built and the goal is the shortest total time of all vehicle in all period. At last, the LINGO software is used to calculate the example and prove the correctness and validity of the model, and the calculation results are analyzed.
出处
《物流科技》
2018年第3期74-77,112,共5页
Logistics Sci-Tech
基金
国家自然科学基金项目
项目编号:71761024
关键词
周期性
容量限制
无向网络
优化模型
periodic
capacity limits
undirected network
optimization model