期刊文献+

基于多因子选股的半监督核聚类算法改进研究 被引量:7

Improvement of Semi-supervised Kernel Clustering Algorithm Based on Multi-factor Stock Selection
下载PDF
导出
摘要 研究了一种附有引力影响因子的半监督K-means核函数聚类算法,并将该方法应用于多因子选股模型中。研究表明,相比传统的聚类模型,改进的模型具有较强的泛化能力,模型在处理样本线性不可分、样本分布非球状簇等问题上具有明显的优势,能选出较优的股票组合。 This paper studies a kind of semi-supervised K-means kernel function clustering algorithm with gravitational influence factors,and applies it to the multi-factor stock selection model.The empirical evidence shows that:Compared with the traditional clustering model,this improved model has a strong generalization ability,and it has obvious advantages in dealing with the non-linear and non-spherical of sample distribution,and can select a better stock combination.
出处 《统计与信息论坛》 CSSCI 北大核心 2018年第3期30-36,共7页 Journal of Statistics and Information
关键词 股票选择 核函数 半监督K-means聚类算法 stock selection kernel function semi-supervised K-means clustering
  • 相关文献

参考文献4

二级参考文献47

  • 1伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 2Basu S, Banerjee A, Mooney RJ. A probabilistic framework for semi-supervised clustering. In: Boulicaut JF, Esposito F, Giannotti F, Pedreschi D, eds. Proc. of the 10th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2004.59-68.
  • 3Bilenko M, Basu S, Mooney RJ. Integrating constraints and metric learning in semi-supervised clustering. In: Brodley CE, ed. Proc. of the 21st Int'l Conf. on Machine Learning. New York: ACM Press, 2004. 81-88.
  • 4Tang W, Xiong H, Zhong S, Wu J. Enhancing semi-supervised clustering: a feature projection perspective. In: Berkhin P, Caruana R, Wu XD, eds. Proc. of the 13th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2007. 707-716.
  • 5Basu S, Banerjee A, Mooney RJ. Active semi-supervision for pairwise constrained clustering. In: Jonker W, Petkovic M, eds. Proc. of the SIAM Int'l Conf. on Data Mining. Cambridge: MIT Press, 2004. 333-344.
  • 6Yan B, Domeniconi C. An adaptive kernel method for semi-supervised clustering. In: Fiirnkranz J, Scheffer T, Spiliopoulou M, eds. Proc. of the 17th European Conf. on Machine Learning. Berlin: Sigma Press, 2006. 18-22.
  • 7Yeung DY, Chang H. Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints. Pattern Recognition, 2006,39(5):1007-1010.
  • 8Beyer K, Goldstein J, Ramakrishnan R, Shaft U. When is "Nearest Neighbors Meaningful"? In: Beeri C, Buneman P, eds. Proc. of the Int'l Conf. on Database Theory. New York: ACM Press, 1999.217-235.
  • 9Ding CH, Li T. Adaptive dimension reduction using discriminant analysis and K-means clustering. In: Ghahramani Z, ed. Proc. of the 19th Int'l Conf. on Machine Learning. New York: ACM Press, 2007.521-528.
  • 10Zhang DQ, Zhou ZH, Chen SC. Semi-Supervised dimensionality reduction. In: Mandoiu I, Zelikovsky A, eds. Proc. of the 7th SIAM Int'l Conf. on Data Mining. Cambridge: MIT Press, 2007. 629-634.

共引文献260

同被引文献44

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部