期刊文献+

基于SSVEP的脑控小车系统的研究 被引量:3

Brain-controlled car system based on SSVEP
下载PDF
导出
摘要 文中设计了一种基于SSVEP的脑控小车分级速度和方向控制的系统,存在向左、向右、向后、向前(一级、二级、三级)6个脑控命令。在刺激范式、刺激时间、空间布局三方面进行了优化,实验表明扩大刺激目标间距、加强刺激时间能够提高目标识别准确率。在脑电解码方面,采用HHT(Hibert-Huang Transform)和CCA(Canonical Correlation Analysis)对比方式,10名被试参与此次研究,结果表明HHT解码方式比CCA在准确度方面提高了6.59%;在特征分类方面,采用支持向量机(Support vector machine,SVM)形式。该方向和分级速度控制系统实现了小车在速度和方向上的灵活控制,优化方法提高脑了控小车的准确度与实时性。实验结果显示在选取范式3,刺激时间3s的条件下,10名被试平均识别准确率高达92.50%。文中理论可望为脑控设备走出实验室打下坚实基础。 This paper gives out the design of brain-controlled system of grading speed and direction based on steady-state visual evoked potentials,there are six brain-controlled commands : le f t, r ig h t, backward,forward ( primary, secondary, te r tia ry). I t optimized on three aspects : stimulation paradigm, the stimulation time and spatial layout. The experiments show that expand the stimulus target spacing and strengthen the stimulus time can improve the accuracy of target recognition. In terms of EEG decoding,i t used HHT ( Hilbert-Huang Transform) and CCA ( Canonical Correlation Analysis) contrast mode. Ten subjects participated in the experiment,the results show that the HHT decoding method is 6.59% higher than the CCA in accuracy; in terms of feature classification, support vector machine (SVM) is adopted.The direction and grading speed control system achieved the car flexible control on the speed and direction aspects, optimization methods improved brain-controlled car accuracy and real- time. The experimental results show that the average accuracy of the 10 subjects is 92. 5 0 % under the condition of selecting paragram 3 and stimulus time of 3s. I t is expected for the brain-controlled machine out of the laboratory to lay a solid foundation.
出处 《信息技术》 2018年第3期92-96,100,共6页 Information Technology
关键词 稳态视觉诱发电位(SSVEP) 希尔伯特-黄变换(HHT) 典型相关分析(CCA) 脑控小车 steady-state visual evoked potentials ( SSVEP) hibert-huang transform ( H H T ) canonical correlation analysis ( CCA) brain-controlled car
  • 相关文献

参考文献7

二级参考文献185

  • 1王行愚.在虚拟与现实之间——自动化若干发展方向刍议[J].自动化学报,2002,28(S1):77-84. 被引量:7
  • 2钟佑明,秦树人,汤宝平.希尔伯特黄变换中边际谱的研究[J].系统工程与电子技术,2004,26(9):1323-1326. 被引量:69
  • 3曹政才,付宜利,吴启迪,王树国,靳保.基于红外传感皮肤的多关节机器人自主运动方法研究[J].自动化学报,2007,33(6):664-667. 被引量:3
  • 4WOLPAW J R,BIRBAUMER N,MCFARLAND D J,et al.Brain-computer interfaces for communication and control[J].Clinical Neurophysiology,2002,113(6):767-91.
  • 5GEORGOPOULOS A P,SCHWARTZ A B,KETTNER R E.Neuronal population coding of movement direction[J].Science,1986,233(4771):1416-1419.
  • 6TONIO B,ANDREAS S,AERTSEN AD,et al.Differential representation of arm movement direction in relation to cortical anatomy and function[J].Journal of Neural Engineering,2009,6(1):016006,doi:10.1088/1741-2560/6/1/016006.
  • 7MELLINGER J,SCHALK G,BRAUN CH,et al.An MEG-based brain-computer interface (BCI)[J].NeuroImage,2007,36(3):581-593.
  • 8WALDERT S,BRAUN CH,PREISSL H.Decoding Performance for hand movement:EEG vs.MEG[C].29th Annual International Conference of IEEE-EMBS,Engineering in Medicine and Biology Society,EMBC'07,2007:5346-5348.
  • 9WALDERT S,PREISSL H,DEMAND E,et al.Hand movement direction decoded from MEG and EEG[J].Journal of Neuroscience,2008,28(4):1000-1008.
  • 10BRADBERRY T J,RONG F,JOS(E) L.Contreras-Vidal.Decoding center-out hand velocity from MEG signals during visuomotor adaptation[J].NeuroImage,2009,47(4):1691-1700.

共引文献188

同被引文献14

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部