期刊文献+

仿生机器鱼浮潜运动建模及控制

Movement modeling and control for snorkeling of biomimetic robotic fish
下载PDF
导出
摘要 良好的巡游和转向性能能够使仿生机器鱼在二维平面内自由游动。然而仿生机器鱼所需完成的任务不仅仅在二维平面内,还需具备上浮和下潜的功能,使其能够在三维平面内自由游动。在当前仿生机器鱼浮潜运动控制方法的基础上,采用重心改变法设计了一种重心调节机构。该机构利用电机和丝杆带动重心调节块前后移动,改变仿生机器鱼重心的位置。针对所设计的重心调节结构,建立了其浮潜运动模型,并利用PID控制器进行浮潜运动仿真。利用仿生机器鱼样机进行实验,实验结果表明所设计的重心调节结构及所建立的运动模型能够有效控制仿生机器鱼的浮潜运动。 Good cruising and steering performance can make the biomimetic robotic lish swim freely in two-dimensional plane. However,the task of biomimetic robotic fish is not only in the two-dimensional plane,but also has the function of floating and d iv in g,so that i t can swim freely in the three-dimensional plane. On the basis of the current control for snorkeling of biomimetic robotic f is h,the center of gravity change method was adopted to design a kind of center of gravity adjusting mechanism. The mechanism uses the motor and the screw rod to drive the gravity center adjusting block to move forward and backward,and change the position of the gravity center of the biomimetic robotic. According to the design of the center of gravity adjustment structure, this paper establishes the movement modeling of snorkeling,and uses the PID controller to simulate the movement of snorkeling. The experimental results show that the design of the center of gravity and the motion model can effectively control the snorkeling of the biomimetic robotic fish.
出处 《信息技术》 2018年第3期117-120,共4页 Information Technology
关键词 仿生机器鱼 浮潜运动 运动学建模 PID控制 biomimetic robotic fish snorkeling movement kinematic model PID control
  • 相关文献

参考文献3

二级参考文献18

  • 1喻俊志,Wang,Shuo,Tan,Min.Simplified propulsive model for biomimetic robot fish and its experimental validation[J].High Technology Letters,2005,11(4):382-386. 被引量:6
  • 2Papadopoulos E, Apostolopoulos E, Tsigkourakos P. Design, con- trol and experimental performance of a teleoperated robotic fish//Proceedings of 17 th Mediterranean Conference on Control & Automa- tion. Thessaloniki, 2009:766.
  • 3Martin J S, Scheid J F, Takahashi T, et al. An initial and bound- ary value problem modeling of fish-like swimming. Arch Ration Mech Anal, 2009, 188(3) : 429.
  • 4Morgansen K A, Duindam V, Mason R J, et al. Nonlinear control methods for planar Carangiform robot fish locomotion//Proceedings of the 2001 IEEE International Conference on Robotics & Automa- tion. Seoul, 2001:427.
  • 5Wang K, Yu J Z. An embedded vision system for robotic fish navi- gation//Proceedings of htternational Conference on Computer Appli- cation and System Modeling. Taiyuan, 2010:333.
  • 6Chen W S, Xia D, Liu J K. Modular design and realization of a torpedo-shape robot fishi Proceedings of IEEE International Con- ference on Mechatronics and Automation. Takamatsu, 2008:125.
  • 7Mason R M, Burdick J W. Experiments in carangiform robotic fish locomotion//Proceedings of IEEE International Conference on Ro- botics & Automation. San Francisco, 2000:428.
  • 8Barrett D S, Triantafyllou M S, Yue D K P, et al. Drag reduction in fish-like locomotion. J Fluid Mech, 1999, 392:183.
  • 9Low K H, Chong C W, Zhou C L. Performance study of a fish ro- bot propelled by a flexible caudal fin//Proceedings of IEEE Inter- national Conference on Robotics and Automation Anchorage Conven- tion District. Anchorage, 2010:90.
  • 10Sfakiotakis M, Lane D M, Davies J B C. Review of fish swim- ming modes for aquatic locomotion. IEEE J Oceanic Eng, 1999, 24(2) : 237.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部