期刊文献+

可印刷柔性应变传感器的制作及其对人体运动行为监测研究 被引量:1

Fabrication of Printable Flexible Strain Sensor for Monitoring Human Body Motions
下载PDF
导出
摘要 该文主要研究了导电浆料PS@Ag/PDMS的流变特性与印刷性,以聚苯乙烯微球表面镀银(PS@Ag)的核壳结构粒子为导电填料,与聚二甲基硅氧烷(PDMS)预聚物及其固化剂复合配制PS@Ag/PDMS导电浆料,采用丝网印刷技术与旋涂工艺制备得到PDMS-PS@Ag/PDMS-PDMS三明治结构柔性应变传感器。柔性应变传感器在人体运动行为中的实时监测结果显示,该传感器在手肘关节与膝盖关节的弯曲——伸展循环运动中的相对电阻变化率分别高达约0.75和0.50,展现出较高的可拉伸柔性、灵敏度及一致性,在人体运动行为监测中具有广阔的应用前景。 In this paper, the rheology and printability of the PS@Ag/PDMS conductive paste were studied. The PS@Ag/PDMS conductive paste was fabricated by mixing the shell-core structured PS@Ag(silver nanoparticles coated on the polystyrene microspheres surfaces) hybrid conductive fillers with liquid polydimethylsiloxane(PDMS) prepolymer and its curing agent. The sandwiched flexible strain sensors of PDMS-PS@Ag/PDMSPDMS were fabricated by embedding the PS@Ag/PDMS composites in two PDMS encapsulated layers using printing technology and spinning coating process. The real-time monitoring results of the sandwiched flexible strain sensors in human body motions show that the relative changes of resistance of the flexible strain sensor in elbow joint and knee joint flexion-extension cycles can reach 0.75 and 0.50 respectively. The sensors show high stretchability, sensitivity and signal uniformity, which have great potentials in the application of human body motion monitoring.
出处 《集成技术》 2018年第1期25-33,共9页 Journal of Integration Technology
基金 科技部国家重点研发计划(2016YFA0202702) 中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC010) 中国科学院深圳先进技术研究院优秀青年基金项目(2016005) 国家自然科学基金项目(61701488 21571186) 广东省重点实验室(2014B030301014) 深圳市基础研究项目(JSGG20150512145714246 JSGG20160229155249762)
关键词 印刷 导电 柔性传感器 人体运动行为监测 printability electrically conductivity flexible strain sensor human body motions monitoring
  • 相关文献

参考文献3

二级参考文献17

  • 1李永舫.导电聚吡咯的研究[J].高分子通报,2005(4):51-57. 被引量:52
  • 2Dunne LE. Design and evaluation of a wearable optical sensor for monitoring seated spinal posture[C]// Dunne LE, Walsh P, Smyth B, et al, eds. 2006 10th IEEE International Symposium on Wearable Computers; Montreux: IEEE, Piscataway, 2006:65-68.
  • 3Corbman BP. Textiles. Fiber to fabric[M]. 6th ed. New York: Gregg Division McGrawHill, 1983.
  • 4Gibbs PT, Asada HH. Wearable conductive fiber sensors for multiaxis human joint angle measurements[J]. Journal of Neuroengineering and Rehabilitation, 2005, 2(1):7.
  • 5Shyr TW, Shie JW, Jiang CH, et al. A textilebased wearable sensing device designed for monitoring the flexion angle of elbow and knee movements[J]. Sensors, 2014, 14(3):4050-4059.
  • 6Wu J, Zhou D, Too CO, et al. Conducting polymer coated lycra[J]. Synthetic Metals, 2005, 155(3):698-701.
  • 7Scilingo EP, Lorussi F, Mazzoldi A, et al. Strainsensing fabrics for wearable kinaestheticlike systems[J]. IEEE Sensors Journal, 2003, 3(4):460-467.
  • 8Li Y, Cheng XY, Leung MY, et al. A flexible strain sensor from polypyrrolecoated fabrics[J]. Synthetic Metals, 2005, 155(1):89-94.
  • 9Patil AJ, Pandey AK. A novel approach for in situ polymerization of polypyrrole on cotton substrates[J]. Indian Journal of Fibre & Textile Research, 2012, 37(2):107-113.
  • 10Liang G, Zhu L, Xu J, et al. Investigations of poly(pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode[J]. Electrochimica Acta, 2013, 103(8):9-14.

共引文献111

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部