期刊文献+

椭圆曲线y^2=x(x-p)(x-q)的整数点(Ⅱ) 被引量:10

Integral points on the elliptic curve y^2=x(x-p)(x-q)(Ⅱ)
下载PDF
导出
摘要 设p,q为奇素数,m>1为正奇数,且q-p=2~m,q≡11(mod16).证明:当m=3时,椭圆曲线y^2=x(x-p)(x-q)(x>q)无整数点(x,y);当m≥5时,至多有1对整数点(x,y).给出了(p,q)=(11,139)时,椭圆曲线的全部整数点. Let p ,q be odd primes and m 〉 1 be positive odd number with q - p = 2^m , q 11(mod16) . In this paper, the author proved that ifm=3, then the elliptic curve y^2 =x(x- p)(x -q) ( x 〉 q ) has no integral point (x,y) ; ifm ≥ 5 , then the elliptic curve has at most one integral point (x ,y) . In addition, all integral points of the elliptic curve were given when (p,q) = (11,139) .
作者 管训贵
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2018年第2期41-46,共6页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(11471144) 江苏省自然科学基金资助项目(BK20171318) 泰州学院教授基金资助项目(TZXY2016JBJJ001)
关键词 椭圆曲线 整数点 丢番图方程 初等方法 elliptic curve integral point Diophantine equation elementary method
  • 相关文献

参考文献4

二级参考文献23

  • 1邱德荣,张贤科.Mordell-Weil groups and Selmer groups of twin-prime elliptic curves[J].Science China Mathematics,2002,45(11):1372-1380. 被引量:11
  • 2潘家宇.关于丢番图方程x^2-Dy^4=1的一些注记[J].河南科学,1997,15(1):18-22. 被引量:9
  • 3罗明,黄勇庆.关于不定方程x^3-1=26y^2[J].西南大学学报(自然科学版),2007,29(6):5-7. 被引量:45
  • 4BAKER A. The Diophantine Equation y^2 = ax^3 + bx^2 + cx +d [J]. J London Math Soc, 1968, 43(1) : 1 - 9.
  • 5STROEKER R J, TZANAKIS N. Solving Elliptic Diophantine Equations by Estimating Linear Forms in Elliptic Logarithms[J]. ActaArith, 1994, 67(2): 177-196.
  • 6STROEKER R J, TZANAKIS N. Computing All Integer Solutions of a Genus 1 Equation[J]. Math Comp, 2003, 72(9): 1917 - 1933.
  • 7QIU De-rong, ZHANG Xian-ke. Mordell-Weil Groups and Selmer Groups of Twin-Prime Elliptic Curves[J]. Sci China: Ser A, 2002, 45(11) : 1372 - 1380.
  • 8WALSH G. A Note on a Theorem of Ljunggren and the Diophantine Equations, x^2-kxy^2+y^4 = 1, 4 [J]. Arch Math, 1999, 73(2): 119-125.
  • 9Gary Walsh.A note on a theorem of Ljunggren and the Diophantine equations x2–kxy2 + y4 = 1, 4[J]. Archiv der Mathematik . 1999 (2)
  • 10Le M H.On the simultaneous Pell equation x2 - D1y2 = δ and z2 - D2y2 = δ. Advances in Mathematics . 2001

共引文献17

同被引文献44

引证文献10

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部