摘要
设p,q为奇素数,m>1为正奇数,且q-p=2~m,q≡11(mod16).证明:当m=3时,椭圆曲线y^2=x(x-p)(x-q)(x>q)无整数点(x,y);当m≥5时,至多有1对整数点(x,y).给出了(p,q)=(11,139)时,椭圆曲线的全部整数点.
Let p ,q be odd primes and m 〉 1 be positive odd number with q - p = 2^m , q 11(mod16) . In this paper, the author proved that ifm=3, then the elliptic curve y^2 =x(x- p)(x -q) ( x 〉 q ) has no integral point (x,y) ; ifm ≥ 5 , then the elliptic curve has at most one integral point (x ,y) . In addition, all integral points of the elliptic curve were given when (p,q) = (11,139) .
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2018年第2期41-46,共6页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(11471144)
江苏省自然科学基金资助项目(BK20171318)
泰州学院教授基金资助项目(TZXY2016JBJJ001)
关键词
椭圆曲线
整数点
丢番图方程
初等方法
elliptic curve
integral point
Diophantine equation
elementary method