期刊文献+

Successful Nitrogen Doping of 1.3 GHz Single Cell Superconducting Radio-Frequency Cavities 被引量:2

Successful Nitrogen Doping of 1.3 GHz Single Cell Superconducting Radio-Frequency Cavities
下载PDF
导出
摘要 A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as a aseful way to improve Q0 of the superconducting cavity in recent years. N-doping researches with 1.3 GHz single cell cavities are carried out at Peking University and the preliminary results are promising. Our recipe is slightly different from other laboratories. After 250μm polishing, high pressure rinsing and 3 h high temperature annealing, the cavities are nitrogen doped at 2.7-4.0Pa for 20rain and then followed by 15μm electropolishing. Vertical test results show that Q0 of a 1.3 GHz single cell cavity made of large grain niobium has increased to 4 ×10 10 at 2.0K and medium gradient. A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as a aseful way to improve Q0 of the superconducting cavity in recent years. N-doping researches with 1.3 GHz single cell cavities are carried out at Peking University and the preliminary results are promising. Our recipe is slightly different from other laboratories. After 250μm polishing, high pressure rinsing and 3 h high temperature annealing, the cavities are nitrogen doped at 2.7-4.0Pa for 20rain and then followed by 15μm electropolishing. Vertical test results show that Q0 of a 1.3 GHz single cell cavity made of large grain niobium has increased to 4 ×10 10 at 2.0K and medium gradient.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第3期75-78,共4页 中国物理快报(英文版)
基金 Supported by the National Key Program for S&T Research and Development under Grant No 2016YFA0400400 the National Natural Science Foundation of China under Grant No 11575012
  • 相关文献

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部