摘要
Cuprous oxide (Cu2O) thin films have been grown by electrodeposition technique onto ITO-coated glass substrates from aqueous copper acetate solutions with addition of sodium thiosulfate at 60 ℃ The effects of sodium thiosulfate on the electrochemical deposition of Cu2O films were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at - 0.58 V vs. SCE and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FrIR), scanning electron microscopy (SEM), and optical, photoelectrochemical and electrical measurements. X-ray diffraction results indicated that the synthesized Cu2O films had a pure cubic phase with a marked preferential orientation peak along (200) plane and with lattice constants a = b = c = 0.425 rim. FFIR results confirmed the presence of Cu2O films at peak 634 cm 1. SEM images of Cu2O films showed a better compactness and spherical-shaped composition. Optical properties of Cu2O films reveal a high optical transmission (〉80%) and high absorption coefficient (α 〉 104 cm- 1 ) in visiblelight region. The optical energy band gap was found to be 2.103 eV. Photoelectrochemical measurements indicated that Cu2O films had n-type semiconductor conduction, which confirmed by Hall Effect measurements. Electrical properties of Cu2O films showed a low electrical resistivity of 61.30 Ω. cm-1, carrier concentration of-4.94×1015cm -3andmobility of20.61cm2.V 1,s-l.Theobtained Cu2O thin films with suitable properties are promising semiconductor material for fabrication of photovoltaic solar cells,
Cuprous oxide(Cu_2 O) thin films have been grown by electrodeposition technique onto ITO-coated glass substrates from aqueous copper acetate solutions with addition of sodium thiosulfate at 60 ℃. The effects of sodium thiosulfate on the electrochemical deposition of Cu20 films were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at-0.58 V vs. SCE and characterized by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), and optical, photoelectrochemical and electrical measurements. X-ray diffraction results indicated that the synthesized Cu20 films had a pure cubic phase with a marked preferential orientation peak along(200) plane and with lattice constants a = b = c = 0.425 nm. FTIR results confirmed the presence of Cu_2 O films at peak 634 cm^(-1) SEM images of Cu_2 O films showed a better compactness and spherical-shaped composition. Optical properties of Cu20 films reveal a high optical transmission(>80%) and high absorption coefficient(α> 10~4 cm^(-1)) in visiblelight region. The optical energy band gap was found to be 2.103 eV. Photoelectrochemical measurements indicated that Cu20 films had n-type semiconductor conduction, which confirmed by Hall Effect measurements.Electrical properties of Cu20 films showed a low electrical resistivity of 61.30 Ω·cm^(-1), carrier concentration of-4.94 × 10^(15)cm^(-3) and mobility of 20.61 cm^2· V^(-1)·s^(-1).The obtained Cu_2 O thin films with suitable properties are promising semiconductor material for fabrication of photovoltaic solar cells.
基金
Supported by the Algerian Ministry of Higher Education and Scientific Research(CNEPRU project number:J0101520090018)