摘要
建立了短轴承模型的非线性转子-轴承系统数学模型,将非线性碰摩力加入模型。数值计算得到了系统在某些参数域中的分叉图、轴心轨迹、相图、Poincaré映射、频谱图以及时域波形,对系统发生混沌运动时的动态特征进行了直观描述,当系统发生混沌运动时的时间序列进行了分形维数计算,计算分析结果为该类系统的设计和状态分析提供理论参考依据。
The nonlinear vibration of an elastic rotor-bearing system on the assumption of short-bearing model is formulated and the nonlinear rubbing force is put into the model. In some typical parameters, the bifurcation diagrams,the shaft centerline orbit, phase portrait, Poincaré maps, the frequency spectrums and time domain waveforms of the system are acquired by using the numerical simulation, displaying the dynamical features when the system is in chaotic motion. The fractal analysis is applied to determine whether the time series is in a state of chaotic motion. The calculating result of this article provides the theoretical reference for designing and state analysis of this kind of system.
出处
《电站系统工程》
2018年第1期16-18,共3页
Power System Engineering