期刊文献+

Optically induced abnormal terahertz absorption in black silicon 被引量:2

Optically induced abnormal terahertz absorption in black silicon
下载PDF
导出
摘要 The absorption responses of blank silicon and black silicon(silicon with micro/nano-conical surface structures) wafers to an 808-nm continuous-wave(CW) laser are investigated at room temperature by terahertz time-domain spectroscopy. The transmission of the blank silicon shows an appreciable change, from ground state to the pump state, with amplitude varying up to 50%, while that of the black silicon(BS) with different cone sizes is observed to be more stable. Furthermore,the terahertz transmission through BS is observed to be strongly dependent on the size of the conical structure geometry.The conductivities of blank silicon and BS are extracted from the experimental data with and without pumping. The non-photo-excited conductivities increase with increasing frequency and agree well with the Lorentz model, whereas the photo-excited conductivities decrease with increasing frequency and fit well with the Drude–Smith model. Indeed, for BS, the conductivity, electron density and mobility are found to correlate closely with the size of the conical structure.This is attributed to the influence of space confinement on the carrier excitation, that is, the carriers excited at the BS conical structure surface have a stronger localization effect with a backscattering behavior in small-sized microstructures and a higher recombination rate due to increased electron interaction and collision with electrons, interfaces and grain boundaries. The absorption responses of blank silicon and black silicon(silicon with micro/nano-conical surface structures) wafers to an 808-nm continuous-wave(CW) laser are investigated at room temperature by terahertz time-domain spectroscopy. The transmission of the blank silicon shows an appreciable change, from ground state to the pump state, with amplitude varying up to 50%, while that of the black silicon(BS) with different cone sizes is observed to be more stable. Furthermore,the terahertz transmission through BS is observed to be strongly dependent on the size of the conical structure geometry.The conductivities of blank silicon and BS are extracted from the experimental data with and without pumping. The non-photo-excited conductivities increase with increasing frequency and agree well with the Lorentz model, whereas the photo-excited conductivities decrease with increasing frequency and fit well with the Drude–Smith model. Indeed, for BS, the conductivity, electron density and mobility are found to correlate closely with the size of the conical structure.This is attributed to the influence of space confinement on the carrier excitation, that is, the carriers excited at the BS conical structure surface have a stronger localization effect with a backscattering behavior in small-sized microstructures and a higher recombination rate due to increased electron interaction and collision with electrons, interfaces and grain boundaries.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期570-574,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.11574408,11504439,61627814,and 61675238) the National Key Research and Development Program of China(Grant No.2017YFB0405402) the National Instrumentation Program of China(Grant No.2012YQ14000508) the Young-talent Plan of State Affairs Commission,China(Grant No.2016-3-02)
关键词 terahertz spectroscopy black silicon ultrafast phenomena terahertz spectroscopy black silicon ultrafast phenomena
  • 相关文献

同被引文献21

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部