期刊文献+

短纤维增强金属基复合材料弹性模量临界值计算预测 被引量:1

Calculation and prediction of critical elastic modulus of short fiber-reinforced metal matrix composites
下载PDF
导出
摘要 基于短纤维增强金属基复合材料弹性模量理论模型,提出了弹性模量临界值的定义,并建立了可用于预测计算的纤维临界长径比和材料参数之间的解析函数。将与曲线拐点切线和最大值水平直线交点相对应的长径比值定义为纤维临界长径比,将与此相对应的函数值定义为弹性模量临界值。计算结果表明,纤维临界长径比随纤维弹性模量的增加而增加,随基体弹性模量和纤维体积分数的增加而降低。 Based on the theoretical model for the elastic modulus of short fiber-reinforced composite,the critical elastic modulus of short fiber-reinforced metal matrix composites was proposed and an analytical expression for the relationship between the critical elastic modulus and the critical aspect ratio of the fiber and other material parameters was derived.The critical aspect ratio of the fiber is defined as the cross-point of the tangent value of the inflexion and the asymptote of the maximum elastic modulus.The calculations reveale that the critical aspect ratio of the fiber increased with increasing the elastic modulus of the fiber and decreased with increasing the elastic modulus of the matrix and the volume fraction of the fiber.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第S2期1-5,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 教育部高等学校博士学科点专项科研基金资助项目(20010183019)
关键词 复合材料 金属基复合材料 短纤维 弹性模量 临界长径比 composite material metal matrix composites short fiber elastic modulus critical aspect ratio
  • 相关文献

参考文献4

二级参考文献22

  • 1田峰,胡更开.金属基复合材料循环硬化性能细观力学分析[J].北京理工大学学报,1996,16(6):591-596. 被引量:2
  • 2Jiang Z,J Mater Sci Technol,1998年,14卷,516页
  • 3Shen Y L,Acta Metall,1994年,42卷,77页
  • 4Shen Y L,Acta Metall Mater,1994年,42卷,77页
  • 5Shi N,Acta Metall Mater,1992年,40卷,2841页
  • 6Arsenault R J,Mater Sci Eng A,1987年,96卷,77页
  • 7Tandon G P, Weng G J. A theory of particulate-reinforced plasticity. J. Appl. Mech, 1988, 55:126 - 135.
  • 8Wakashima K.Tsukamoto H.Mean—field micromechanical model and its application to the analysis of thermomechanical behavior of composite materials.Mater.Sci.&Engr,1991,A146:291-315.
  • 9Petermann H E, Plankensteiner A F, Bohm H J, et al. A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori-Tanaka approach. Computers and Structures,1999, 71:197 - 214.
  • 10Gavazzi A C, Lagoudas D C. On the numerical evaluation of Eshelby's tensor and its application to elastoplastic fibrous composites.Computational Mechanics, 1990, 7:12 - 19.

共引文献7

同被引文献13

  • 1沈金龙,李四年,余天庆,郑重,吴瑜锟.粉末冶金法制备镁基复合材料的力学性能和增强机理研究[J].铸造技术,2005,26(4):309-312. 被引量:33
  • 2Kaczmar J W,Pietrzak K,Wlosinski W,et al.The production and application of metal matrix composite material.Journal of Materials Processing Technology,2000; 106:58-67.
  • 3Song G A,Lee W,Lee N S,et al.Microstructrural evolution and mechanical properties of Mg-Cu-Zn ultrafine eutectic composites.Journal of Materials Research,2009;24(9):2892-2898.
  • 4李海军.基于原子势的碳纳米管有限元模拟.南京:南京航空航天大学,2006.
  • 5高海棠.Laves相Mg(Cu1-xAlx)2)的热压烧结及其性能研究.兰州:兰州理工大学,2009.
  • 6Chen W,Sun J.The electronic structure and mechanical properties of MgCu2 Laves phase compound.Physica B,2006;382(2),279-284.
  • 7Wan H,Delale F,Shen L.Effect of length and CNT-Matrix Interphase in carbon nanotube (CNT) reinforced composites.Mechanics Research Communications,2005;32:481-489.
  • 8Haque A,Ramasetty A.Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites.Composite Structures,2005;71:68-77.
  • 9Jiang Z H,Lian J S,Yang D Z,et al.An analytical study of the influence of thermal residual stress on the elastic and yield behaviors of short fiber-reinforced metal matrix composites.Materials Science and Engineering,1998; A248:256-275.
  • 10夏健明,魏德敏.碳纳米管的连续介质方法研究进展[J].力学与实践,2008,30(2):11-15. 被引量:1

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部