期刊文献+

基于分层强化学习的多移动机器人避障算法 被引量:1

Obstacle avoidance of multi mobile robots based on hierarchical reinforcement learning
下载PDF
导出
摘要 介绍了一种基于分层思想的强化学习方法,即将机器人的复杂行为分解为一系列简单的行为进行离线独立学习,并分别设计了每个层次的结构、参数及函数。这种学习方法能够减小状态空间并简化强化函数的设计,从而提高了学习的速率以及学习结果的准确性,并使学习过程实现了决策的逐步求精。最后以多机器人避障为任务模型,将避障问题分解为躲避静态和动态障碍物以及向目标点靠近3个子行为分别进行学习,实现了机器人的自适应行为融合,并利用仿真实验对其有效性进行了验证。 A reinforcement learning algorithm based on the idea of partition layer was proposed that decomposing the complicated problem into a series of simple portions to be learned independently.The structures,parameters and functions of every level were designed.This learning algorithm could reduce the status space and predigest the design of reinforcement functions so as to improve the learning speed and the veracity of learning results.Also,it could realize the accuracy of the learning process step by step.Finally,the method was used for adaptive action fusion of mobile robot in an 'obstacle avoidance' task by decomposing it into avoiding static and dynamic obstacle and closing to object actions.And its efficiency was shown by simulation results.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第S2期108-112,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省科技发展计划重大项目(20050326)
关键词 自动控制技术 避障 强化学习 Q-学习 分层学习 automatic control technology obstacle avoidance reinforcement learning Q-learning multi-level learning
  • 相关文献

参考文献5

二级参考文献14

  • 1Lin L J,Proc AAAI'91,1991年,781页
  • 2Lin L J,From Animals to Animates:Int Conference on Simulation of Adaptive Behavior,1991年
  • 3MORENO D L. Using prior knowledge to improve reinforcement learning in mobile robotics[A]. Towards Autonomous Robotic Systems [C]. Colchester, UK, 2004.
  • 4DIXON K, MALAK R, KNOSLA P. Incorporating prior knowledge and previously learned information into reinforcement learning agents [R].Carnegie Mellon University, Institute for Complex Engineered Systems, 2000.
  • 5WATKINS C J, DAYAN P. Q-learning [J]. Machine Learning, 1992, 8(3-4): 279-292.
  • 6TAN Ming. Multi-agent reinforcement learning: Independent vs. cooperative agents [A]. Proceedings of the Tenth International Conference on Machine Learning [C]. Amherst, MA, USA, 1993.
  • 7LITTMAN M L. Friend-or-foe Q-learning in general-sum games [A]. Proceedings of the Eighteenth International Conference on Machine Learning [C]. Williamstown, MA, USA, 2001.
  • 8KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: a survey [J]. Journal of Artificial Intelligence Research, 1996, 4(2): 237-285.
  • 9蒋国飞,吴沧浦.Q学习算法在库存控制中的应用[J].自动化学报,1999,25(2):236-241. 被引量:19
  • 10高阳,周志华,何佳洲,陈世福.基于Markov对策的多Agent强化学习模型及算法研究[J].计算机研究与发展,2000,37(3):257-263. 被引量:30

共引文献283

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部