期刊文献+

SCR催化剂表面NH3和NO吸附实验与机理研究 被引量:1

Experiment and DFT Study of NH3 and NO Adsorption on SCR Catalyst Surface
原文传递
导出
摘要 选择性催化还原(SCR)技术被广泛应用于大型燃煤机组烟气氮氧化物脱除中,脱硝效率达到90%以上。烟气温度下降会导致SCR系统的催化剂受损,在停机之前会停止向SCR系统喷氨,导致此期间的NO_x排放超标。采集并计算了某电厂停炉过程中排放NO的数据,实验发现NO排放量在此过程中仍会有不同幅度的降低。运用密度泛函理论(DFT)基于V_2O_5团簇模型研究了NO和NH_3在催化剂不同吸附位上的吸附机理。研究结果表明:NO不会稳定吸附在催化剂的表面;NH_3既能吸附在钒基表面的Lewis酸性位,又可吸附在Br?nsted酸性位,而且更稳定。由此可知,停机后由于吸附在催化剂表面的NH_3与烟气中的NO反应,使得出口处的NO量降低。 Selective Catalytic Reduction (SCR) technology is widely used in coal-fired power plants for NOx removal, and its denitration efficiency can reach above 90%. However, when the flue gas temperature is low,it can lead to the destruction of SCR catalyst, and the ammonia spray into the SCR system will be stopped before the system is turned down, ,which possibly results in an excessive NO emission in this pe- riod. The data of NO emission during the boiler shutdown period is collected and processed, and the ex- perimental results show a decrease in the NO emission. The adsorption mechanisms of NO and NH3 on different sites of denitrification catalyst have been studied based on the V2O5 cluster model with the density functional theory (DFT) method. Results indicate that NO cannot be stably adsorbed onto the catalyst surface ,whereas the NH3 can be stably adsorbed on both the Lewis and Brφnsted sites of V2Osmodel surface, and the adsorption on the latter site is found to be more stable. It is found that the amount of NO reduction after shutdown is due to the reaction of NO with the adsorbed NH3 on the catalyst surface.
出处 《热能动力工程》 CAS CSCD 北大核心 2018年第3期80-87,共8页 Journal of Engineering for Thermal Energy and Power
关键词 V_2O_5 NO NH_3 DFT 吸附 V2O5, NO,NH3, density functional theory, adsorption
  • 相关文献

参考文献2

二级参考文献22

  • 1管一明,胡宇峰.火电厂高飞灰布置SCR系统的主要组成和设备[J].电力环境保护,2004,20(4):25-27. 被引量:15
  • 2刘晶,郑楚光,徐明厚,张军营.燃烧中汞与N_2O、O_3的反应机理[J].燃烧科学与技术,2005,11(2):155-158. 被引量:4
  • 3冯道显.燃煤电站锅炉脱硝技术应用[J].电力环境保护,2005,21(2):23-26. 被引量:9
  • 4刘晶,郑楚光,邱建荣.燃烧烟气汞反应的量子化学计算方法研究[J].工程热物理学报,2007,28(3):519-521. 被引量:11
  • 5Choi H K, Lee S H, Kim S S. The Effect of Activated Carbon Injection Rate on the Removal of Elemental Mercury in a Particulate Collector with Fabric Filters [J]. Fuel Processing Technology 2009, 90(1): 107-112.
  • 6Lopez-Antdn M A, Abad-Valle P, Diaz-Somoano M, et al. The Influence of Carbon Particle Type in Fly Ashes on Mercury Adsorption [J]. Fuel, 2009, 88(7): 1194--1200.
  • 7ZHENG Chuguang, LIU Jing, LIU Zhaohui, et al. Kinetic Mechanism Studies on Reactions of Mercury and Oxidizing Species in Coal Combustion [J]. Fuel, 2005, 84(10): 1215-1220.
  • 8Kienle H, Bader E. Activated Carbon and Its Industry Applications [J]. Beijing: Environment Science Press, 1990: 3-7.
  • 9Perry S T, Hamby E M. Solid state ^13C NMR Characterization of Matched Tars and Chars from Rapid Coal Devolatilization [J]. Proceedings of Combustion Institute, 2000, 28(2): 2313-2319.
  • 10Chen N, Yang R T. Ab Initio Molecular Orbital Calculation on Graphite: Selection of Molecular System and Model Chemistry [J]. Carbon, 1998, 36(7/8): 1061-1070.

共引文献20

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部