期刊文献+

聚乙二醇单甲醚接枝改性壳聚糖的研究 被引量:2

Graft Modification of Chitosan by Polyethylene Glycol Monomethyl Ether
下载PDF
导出
摘要 采用十二烷基硫酸钠(SDS)对壳聚糖(CS)链上的氨基进行保护,得到中间产物壳聚糖-十二烷基硫酸钠复合物(CS-SDS)。以六亚甲基二异氰酸酯(HDI)为偶联剂活化聚乙二醇单甲醚(mPEG)得mPEG-NCO。将mPEG-NCO接枝到CS-SDS上,脱除壳聚糖氨基保护,制得CS与mPEG的接枝共聚物CS-g-mPEG,并采用FTIR、1 HNMR、GPC、XRD、TG-DTG等方法对产物结构进行表征。XRD分析表明,CS-g-mPEG结晶度降低,溶解性提高;热重分析表明,CSg-mPEG降解温度升高,热稳定性提高;CS-g-mPEG的摩尔接枝率达到28.55%。 We used sodium dodecyl sulfate(SDS) to protect the amino group on chitosan(CS) chain,and ob- tained the intermediate product of chitosan-sodium dodecyl sulfate complex(CS-SDS). Furthermore, using 1,6- hexamethylene diisocyanate(HDI) as a coupling agent,we abtained activated mPEG-NCO,which grafted onto CS-SDS, removed chitosan amino protection, and synthesized graft copolymer CS-g-mPEG. Furthermore, we characterized the structure of the product by FTIR,1HNMR, GPC, XRD, and TG-DTG. XRD analysis results show that crystallinity of CS-g-rnPEG decreases,and the solubility improves. Thermogravimetry analysis results show that the degradation temperature of CS-g-mPEG increases, and the thermal stability improves. The molar grafting rate of CS-g-mPEG reaches 28.55 %.
出处 《化学与生物工程》 CAS 2018年第3期32-36,50,共6页 Chemistry & Bioengineering
关键词 壳聚糖 聚乙二醇单甲醚 共聚物 定位接枝 chitosan polyethylene glycol monomethyl ether copotymer controlled graft
  • 相关文献

参考文献1

二级参考文献14

  • 1陈煜,陆铭,王海涛,谭惠民.壳聚糖接枝聚丙烯酸高吸水性树脂的合成工艺[J].高分子材料科学与工程,2005,21(5):266-269. 被引量:33
  • 2Abdou ES, Nagy KSA, Elsabee MZ. Extraction and Characterization of Chitin and Chitosan from Local Sources[J]. Bioresour. Technol., 2008, 99:1359.
  • 3Yang Yang, Qiang He, Li Duan, et al. Assembled Alginate/chitosan Nanotubes for Biological Application[J]. Biomaterials, 2007, 28: 3 083-3 090.
  • 4Said S, Elkholy, Khalid D, et al. Grafting of Acryloyl Cyanoacetohy- drazide onto Chitosan[J]. J. Polym. Res., 2011, 18:459-467.
  • 5Fanny Lebouc. Different Ways for Grafting Ester Derivatives of Poly(ethylene glycol) onto Chitosan: Related Characteristics and Potential Properties[J]. Polymer, 2005, 46:639-651.
  • 6ErbacherP, Zou S, Bettinger T, et al. Chitosan-based Vector/DNA Complexes for Gene Delivery: Biophysical Characteristics and Transfection Ability[J]. Pharm. Res., 1998, 15:1 332-1 339.
  • 7Richardson S C, Kolbe H V, Duncan R. Potential of Low Molecular Mass Vhitosan as a DNA Delivery System: Biocompatibility, Body Distribution and Ability to Complexand Protect DNA[J]. Int. J. Pharm., 1999, 178:231-243.
  • 8Kping-Hggard M, Tubulekas I, Guan H, et al. Chitosan as a Non Viral Gene Delivery System. Structure-property Relationships and Characteristics Compared with Polyethylenimine in vitro and after Lung Administration in vivo[J]. Gene Ther., 2001, 8:1 108-1 121.
  • 9Bozkir A, Saka O M. Chitosan Nanoparticles for Plasmid DNA Delivery: Effect of Chitosan Molecular Structure on Formulation and Release Characteristics[J]. Drug Deliv., 2004, 11 : 107-112.
  • 10Bozkir A, SakaO M. Chitosan-DNA Nanoparticles: Effect on DNA Integrity, Bacterial Transformation and Transfection Efficiency[J]. J. Drug Target, 2004, 12:281-288.

共引文献2

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部