期刊文献+

基于探地雷达信号频带介电谱特征的公路早期病害检测 被引量:11

Dielectric Spectrum Feature Vector of Ground Penetrating Radar Signal in Frequency Bands for Detecting Expressway Subgrade Diseases
下载PDF
导出
摘要 现有的探地雷达(GPR)技术都是在公路病害产生后进行病害定位;而不是在病害发生的早期对病害进行预测。为了实现公路早期病害检测,构建了公路早期病害识别系统;该系统充分利用GPR信号的频带介电谱特征,分别抽取训练样本和测试样本的频带介电谱特征向量,以识别公路早期病害情况。实验结果表明:频带介电谱特征向量可较好地表征GPR信号对应的地电信息,适用于GPR信号的分类;该系统能对公路基层的密实度特征和含水量特征进行有效识别,为公路早期病害检测提供了技术保障。此外,该系统具有很强的实时性,对各个测试样本进行特征向量提取和识别的平均耗时不大于0.8 ms。 All of the existing ground penetrating radar( GPR) technologies were only used to locate expressway subgrade diseases,but not carry out disease forecast of embankments. In order to predict the diseases,a diseases recognition system was formulated,which made the fullest use of the dielectric spectrum of GPR signal in different frequency bands. The dielectric spectrum feature vectors of the training and testing samples are separately extracted to identify the road early diseases. The experimental results show that the dielectric spectrum feature vector can be applied on target classification of GPR signal. The proposed system can identify the compaction degree and water content of embankments and provide guarantees for disease forecast of embankments. Besides,it has characteristics of excellent real-time ability. In the process of the extraction of feature vector and pattern recognition,the average elapsed time is less than 0. 8 milliseconds.
出处 《科学技术与工程》 北大核心 2018年第4期344-348,共5页 Science Technology and Engineering
基金 中国博士后科学基金(2016LH0016) 国家自然科学基金(11434012) 国家自然科学基金国际(地区)合作与交流项目(41561144006)资助
关键词 探地雷达 公路病害检测 特征向量 介电谱 ground penetrating radar expressway subgrade diseases detection feature vector dielectric spectrum
  • 相关文献

参考文献1

二级参考文献12

  • 1Tzanis A. Detection and extraction of orientation and scale dependent information from two-dimensional GPR data with tuneable directional wavelet filters [J]. Journal of Applied Geophysics, 2013,89 : 48-67.
  • 2Bniger U, Tronicke J. Subsurface utility extraction and characterization combining GPR symmetry and polariza- tion attributes [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(3) : 736-746.
  • 3Hannuree J, Seiichiro K, Kim H J. SVD inversion of zero- offset profiling data obtained in the vadose zone using cross-borehole radar [J]. IEEE Transactions on Geosci- ence and Remote Sensing, 2011,49(10) : 3849-3855.
  • 4Ferro A, Bruzzone L. Automatic extraction and analysis ofice layering in radar sounder data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51 (3) : 1622- 1634.
  • 5Cui X, Guo L, Chen J, et al. Estimating tree-root biomass in different depths using ground-penetrating radar: evi- dence from a controlled experiment [J]. IEEE Transac- tions on Geoscience and Remote Sensing, 2013, 51 (6) : 3410-3422.
  • 6Fr6d6ric Andr6, Mathieu Jonard, S6bastien Lambot. Non- invasive forest litter characterization using full-wave in- version of microwave radar data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53 (2) : 828- 840.
  • 7Esther B, John H B. Reflection waveform inversion of ground-penetrating radar data for characterizing thin and ultrathin layers of nonaqueous phase liquid contaminants in stratified media [ J 1. Geophysics, 2015,80 ( 2 ) : H 1-H 11.
  • 8Zhang H R, Ouyang S, Wang G F, et al. Matched filtering algorithm based on phase-shifting pursuit for ground-pen- etrating radar signal enhancement [J]. Journal of Applied Remote Sensing,2014,8( 1 ) : 083593.
  • 9Werner G R, Bauer C A, Cary J R. A more accurate, sta- ble, FDTD algorithm for electromagneties in anisotropic dielectrics[J].Journal of Computational Physics, 2013, 255(12) :436-455.
  • 10Zhang H R, Ouyang S, Wang G F, et al. Active contour model to the inversion of surface nuclear magnetic reso- nance data[J]. Journal of Computational Information Sys- tems,2015,11(2) :719-726.

共引文献2

同被引文献68

引证文献11

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部