期刊文献+

网络视频流量分类的特征选择方法研究 被引量:5

Contrastive analysis of features selection on network video traffic classification
下载PDF
导出
摘要 准确,高效的业务流识别与分类是保障多媒体通信端到端Qo S(Quality of Service),执行相关网络操作的前提。如今数据规模的剧烈增加为业务流的分类提出了挑战,而特征选择能够尽可能地减少特征维数,去除冗余特征,为大数据时代下的业务流分类提供解决办法。对现有的特征选择方法分成Filter、Wrapper、Embedded三类,分析了各类算法的性能原理。采用最新数据集对不同特征选择算法性能对比,从算法的运行时间、特征压缩率、准确率三个方面评估了特征选择算法的性能。另外,针对现有数据集分类情况进行分级分类以达到视频流的细分类,从而提高分类的准确率。 Accurate identification and categorization of multimedia traffic is the premise of end to end Qo S(Quality of Service)guarantees. Today, the dramatic growth of data volume takes challenge to network traffic classification. Therefore, using feature selection methods for multimedia flow identification and classification is particularly important in the big data era. This paper introduces related works on feature selection using identification and categorization of multimedia traffic, which is divided into three categories:Filter, Wrapper, Embedded and analyzes the performance of these methods.Then, this paper compares the performance of various feature selection algorithms using latest dataset from three aspects:The running speed, the feature compression rate and the feature selection accuracy. Besides, to improve classification accuracy, this paper proposes a hierarchical structure to reach fine-grained classification, according to the dataset.
作者 吴争 董育宁
出处 《计算机工程与应用》 CSCD 北大核心 2018年第6期7-13,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61271233)
关键词 特征选择 视频流分类 多级分类器 features selection video traffic classification hierarchical classifier
  • 相关文献

参考文献2

二级参考文献65

  • 1Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155.
  • 2Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539.
  • 3Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32.
  • 4Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226.
  • 5Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
  • 6Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555.
  • 7Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671.
  • 8Novovicova J, Petr S, Michal H, et al. Conditional mutual information based feature selection for classification task[C]. Proc of the 12th Iberoamericann Congress on Pattern Recognition. Valparaiso, 2007: 417-426.
  • 9Qu G, Hariri S, Yousif M. A new dependency and correlation analysis for features[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(9): 1199- 1207.
  • 10Forman G. An extensive empirical study of feature selection metrics for text classification[J]. J of Machine Learning Research, 2003, 3(11): 1289-1305.

共引文献217

同被引文献37

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部