期刊文献+

邻域决策错误率的局部约简方法研究 被引量:2

Research on local attribute reduction approach via neighborhood decision error rate
下载PDF
导出
摘要 传统基于邻域决策错误率的属性约简准则是针对总体分类精度的提升而设计的,未能展现因约简而引起的各类别精度变化情况。针对这一问题,引入局部邻域决策错误率以及局部属性约简的概念,其目的是提升单个类别的分类精度。在此基础上,进一步给出了求解局部邻域决策错误率约简的启发式算法。在8个UCI数据集上的实验结果表明,局部约简不仅是提高各个类别精度的有效技术手段,而且也解决了因全局约简所引起的局部分类精度下降问题。 Traditional criteria of attribute reduction for neighborhood decision error rate is designed for improving overall classification accuracy, it does not take the variation of accuracy of each class into consideration when reduction finding is executed. From this point of view, the concepts of local neighborhood decision error rate and local attribute reduction are introduced for improving the classification accuracy of single class. Furthermore, a heuristic algorithm to compute local neighborhood decision error rate based reduction is presented. The experimental results on 8 UCI data sets show that the local reduction can not only improve the classification accuracy of single class, but also overcome the limitation of accuracy's decreasing for single class, which may be caused by global reduction.
出处 《计算机工程与应用》 CSCD 北大核心 2018年第6期95-99,122,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61572242 No.6150316 No.62502211) 江苏省高校哲学社会科学基金(No.2015SJD769) 中国博士后科学基金(No.2014M550293) 江苏省青蓝工程人才项目
关键词 属性约简 全局约简 启发式算法 局部约简 邻域粗糙集 attribute reduction global reduction heuristic algorithm local reduction neighborhood rough set
  • 相关文献

参考文献5

二级参考文献98

  • 1于达仁,胡清华,鲍文.融合粗糙集和模糊聚类的连续数据知识发现[J].中国电机工程学报,2004,24(6):205-210. 被引量:70
  • 2谢宏,程浩忠,牛东晓.基于信息熵的粗糙集连续属性离散化算法[J].计算机学报,2005,28(9):1570-1574. 被引量:134
  • 3刘金福,于达仁,胡清华,王伟.基于加权粗糙集的代价敏感故障诊断方法[J].中国电机工程学报,2007,27(23):93-99. 被引量:14
  • 4R Gilad-Bachrach Ranb,A Navot,N Tishby.Margin based feature selection-theory and algorithms[A].International Conference on Machine Learning[C].ACM Press,2004.43-50.
  • 5T G Dietterich.An experimental comparison of three methods for constructing ensembles of decision trees:bagging,boosting,and randomization[J].Mach Learn,2000,40:139-157.
  • 6Zhou Z-H,Yu Y.Ensembling local learners through multimodal perturbation[J].IEEE Trans.SMC-Part B:Cybernetics.2005,35:725-735.
  • 7L Breiman.Bagging predictors[J].Machine Learning.1996,24(2):123-140.
  • 8RE Schapire.The strength of weak leamability[J].Machine Learning,1990,5(2):197-227.
  • 9C Blake,C J Merz.UCI repository of machine learning databases[DB/ OL].http://www.ics.uci.edu/mlearn/MLRepository.html,Department of ICS,University of California,Irvine,1998.
  • 10Hu Q H,Yu D R,Xie Z X,Li X D.EROS:ensemble rough subspaces[J].Pattern Recognition.2007,40:3728-3739.

共引文献143

同被引文献17

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部