期刊文献+

PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan 被引量:1

PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan
原文传递
导出
摘要 Ammonia has emerged as a promising hydrogen carrier with applications as an energy source in recent years. However, in addition to being toxic, gaseous ammonia is a precursor of secondary inorganic aerosols. The concentration of ambient fine particulate matter (PM2.5) is intrinsically connected to public health. In this study, PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan, were investigated. It was assumed that 20% of the electricity consumption in Kanto Region, the most populated area in Japan, was supplied by mnmonia-hydrogen energy. The PM2.5 resulted from incomplete ammonia decomposition was simulated by a chemical transport model: ADMER-PRO (modified version). Based on the incremental PM2.5 concentration, health impacts on the elderly (individuals over 65 years old) were quantitatively evaluated. The ammonia emission in this scenario increased PM2 s by 11.7% (0.16 μg·m-3.y-1) in winter and 3.5% (0.08 μg · m-3.y-1) in summer, resulting in 351 premature deaths per year. This study suggests that cost- effective emissions control or treatment and appropriate land planning should be considered to reduce the associated health impacts of this type of energy generation. In addition, further in-depth research, including cost-benefit analysis and security standards, is needed. Ammonia has emerged as a promising hydrogen carrier with applications as an energy source in recent years. However, in addition to being toxic, gaseous ammonia is a precursor of secondary inorganic aerosols. The concentration of ambient fine particulate matter (PM2.5) is intrinsically connected to public health. In this study, PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan, were investigated. It was assumed that 20% of the electricity consumption in Kanto Region, the most populated area in Japan, was supplied by mnmonia-hydrogen energy. The PM2.5 resulted from incomplete ammonia decomposition was simulated by a chemical transport model: ADMER-PRO (modified version). Based on the incremental PM2.5 concentration, health impacts on the elderly (individuals over 65 years old) were quantitatively evaluated. The ammonia emission in this scenario increased PM2 s by 11.7% (0.16 μg·m-3.y-1) in winter and 3.5% (0.08 μg · m-3.y-1) in summer, resulting in 351 premature deaths per year. This study suggests that cost- effective emissions control or treatment and appropriate land planning should be considered to reduce the associated health impacts of this type of energy generation. In addition, further in-depth research, including cost-benefit analysis and security standards, is needed.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2018年第2期127-137,共11页 环境科学与工程前沿(英文)
关键词 Ammonia emissionsEnergy carrierHydrogen energyFine particulate mattersAtmospheric modelingPremature death Ammonia emissionsEnergy carrierHydrogen energyFine particulate mattersAtmospheric modelingPremature death
  • 相关文献

同被引文献19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部