摘要
[目的/意义]综合战略坐标图和改进的主题关联度计算方法,进行主题演变分析和主题突变识别。[方法/过程]构建特定领域的关键词共现网络,分析各时间段主题中心度、密度和主题规模的变化,结合改进的主题关联度计算方法,分析主题的时序演变和突变。[结果/结论]以基因组编辑技术领域为例,分析了该领域的主题时序演变,发现了可能处于萌芽期的主题突变,并与之前的方法进行比较,验证了所提主题关联计算方法的有效性,进而从不同角度分析了基因组编辑技术的主题演化路径。[局限]仅选取了基因编辑领域进行验证详述,未对其他领域进行实验分析。
[Purpose/significance] This paper analyzes topic evolution and identifies topic mutations based on the strategic diagram and improved topic correlation method. [Method/process]The keywords co-occurrence network of a certain field is constructed to analyze the topic centrality,density and size in different time snaps,and the sequential development and mutations of the topics. [Result/conclusion] Taking the genome editing field as an example,the paper studies the topic sequential development,and recognizes the possible mutated topics in the initial stage. The validity of the proposed method is verified by comparing with the traditional ones. The topic evolution paths of genome editing are further analyzed from different perspectives. [Limitations]Only the field of genome editing has been verified and analyzed in the paper,and other fields remain to be analyzed.
出处
《情报理论与实践》
CSSCI
北大核心
2018年第3期129-135,共7页
Information Studies:Theory & Application
基金
国家自然科学基金青年科学基金项目"基于被引科学知识突变的突破性创新动态识别及其形成机理研究"(项目编号:71503125)
江苏省社会科学基金项目"基于社团结构动态演化的主题突变监测与形成机制研究"(项目编号:17TQC003)的成果之一
关键词
主题演变
主题突变
主题关联度
主题识别
topic evolution
topic mutation
topic correlation
topic identification