期刊文献+

改进风电叶片疲劳试验力矩等效配重优化方法 被引量:4

The Improvement of Additional Mass Settling Method Based on Bending Moment Distribution Equivalent for Resonant Fatigue Test
原文传递
导出
摘要 由于缺乏对风电叶片疲劳试验配重加载方案的针对性设计与研究,疲劳试验中试验力矩分布与目标相比误差较大,这导致疲劳试验数据无法真实反映风机叶片受载情况.为了解决这个问题,本文基于有限元壳模型的模态计算,结合粒子群算法作为优化手段构建了力矩等效配重加载优化程序.通过分析附加配重对振型变化的影响,对比了配重加载位置与配重质量对等效结果的影响,并以此为基础对力矩等效配重加载优化程序的变量搜索范围做出改进.另外在动力学分析基础上提出了多种共振疲劳试验中修改质量矩阵与刚度矩阵的方式,据此进一步对优化程序变量维度进行了拓展。最后本文以38 m,1.5 MW叶片有限元计算为例进行了方案验证。 Because of lacking the specific method to settle additional mass saddles on blade, the wind blade fatigue testing bending moment cannot match the goal perfectly. To solve this problem, this paper designs an additional mass settling method by combining particle swarm optimization and finite shell element analysis. And this paper also compare the effect of mass position with mass weight by dynamics analysis, which leads to an improvement for the mass settling method. Besides, some assistant operations are offered to improve the result by modifying the mass matrix and the stiffness matrix of blade. At the end of this paper, an example of 1.5 MW, 38 m blade is presented.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第3期526-533,共8页 Journal of Engineering Thermophysics
基金 中国科学院关键技术人才项目 国家能源应用技术研究及工程示范项目(No.NY20110601)
关键词 粒子群算法 有限元 疲劳试验 动力学分析 PSO FEM fatigue test dynamics analysis
  • 相关文献

参考文献3

二级参考文献32

  • 1李德源,叶枝全,陈严,包能胜.风力机玻璃钢叶片疲劳寿命分析[J].太阳能学报,2004,25(5):592-598. 被引量:51
  • 2李德源,叶枝全,陈严,包能胜.风力机叶片载荷谱及疲劳寿命分析[J].工程力学,2004,21(6):118-123. 被引量:74
  • 3陈余岳.玻璃钢风力机叶片疲劳设计[J].风力发电,1992,9(4):17-21. 被引量:4
  • 4于颖,李永生,於孝春,胡毅,陈立苏.波纹管的结构优化设计[J].压力容器,2005,22(12):22-24. 被引量:24
  • 5KENNEDY J, EBERHART R. Particle swarm optimization[C]// IEEE Int'l Conference on Neural Networks. Piscataway, NJ: IEEE Service Center, 1995:1 942-1 948.
  • 6KENNEDY J, EBERHART R. Discrete binary version of the particle swarm algorithm[C]// Proceedings of the IEEE International Conference on Systems, Man. and Cybernetics. Orlando, FL, USA: IEEE, 1997, 5:4 104- 4 108.
  • 7JUAN J. Particle swarm optimization applications in power system engineering[D]. Puerto Rico: University of Puerto Rico, 2004.
  • 8TAYAL M. Particle swarm optimization for mechanical design[D]. Texas: University of Texas, 2003.
  • 9SHI Y, EBERHART R C. Parameter selection in particle swarm optimization [C]// Evolutionary Programming Ⅶ. Lecture Notes in Computer Science. Berlin, 1998, 1 447: 591-600.
  • 10SHIN D K. A penalty approach for nonlinear optimization with discrete design variables[J]. Engineering Optimization, 1990, 16. 29-42.

共引文献74

同被引文献30

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部