期刊文献+

多组分气体在多孔介质中扩散过程的数值模拟 被引量:4

Numerical Simulation of Multicomponent Gas Transport in Porous Media
原文传递
导出
摘要 通过对已有的多组分气体在多孔介质中的扩散模型与实验结果对比,发现尘气模型(DGM)与实验结果吻合较好,并利用该模型对CH_4/O_2/N_2三元混合气体在不同孔径的多孔介质内扩散过程进行了数值模拟,分析了扩散与对流两种机理在有/无压差下对扩散通量的影响,对比分析了干燥和含水非饱和多孔介质中的扩散过程.结果表明在无压差的扩散过程中也存在对流;气体的扩散速度随孔径的减小先增大后减小;含水非饱和多孔介质中扩散速度减弱。 In this paper, the equations governing the transport of multicomponent gas through porous media are examined with experimental data for CH4/O2/N2 in 1D geometry, and the Dust Gas Model (DGM) is the most appropriate model to simulate gas transport phenomena inside porous media. Numerical technique for DGM model is used to calculate the diffusion and advection fluxes and determine which mechanism is dominant in gas transport. The effect of pressure difference, pore diameter and water saturation are analyzed. The results show that advection process also exists on condition that there is no pressure difference between inlet and outlet. The gas velocity first increases with media pore diameter decreasing and then decreases. Water in porous media slows the gas transport process because of the relative pore diameter and permeability.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第3期603-608,共6页 Journal of Engineering Thermophysics
基金 国家重点基础研究发展计划(973)课题(No.2011CB706904) 国家自然科学基金创新研究群体(No.51621062)
关键词 DGM模型 多孔介质 多组分气体 数值模拟 DGM model porous media multicomponent numerical simulation
  • 相关文献

参考文献1

二级参考文献24

  • 1Chan C, Zamel N, Li X G, et al. Experimental Measure- ment of Effective Diffusion Coefficient of Gas Diffusion Layer/Microporous Layer in PEM Fuel Cells [J]. Elec- trochimica Acta, 2012. 65:13 -21.
  • 2Das P K, Li X G, Liu Z S. Effective 3h-ansport Coeffi- cients in PEM Fuel Cell Catalyst and Gas Diffusion Lay- ers: Beyond Bruggeman Approximation [J]. Applied En- ergy. 2010, 87(9): 2785- 2796.
  • 3Shou D H, Tang Y H, Ye L, et al. Effective Permeabil- ity of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells [J]. International Journal of Hydrogen Energy, 2013, 38(25): 10519-10526.
  • 4Civan F, Rai C S, Sondergeld C H. Shale-Gas Permeability and Diffusivity Inferred by Improved Formulation of Rele- vant Retention and Transport Mechanisms [J]. Transport in Porous Media, 2010, 86(3): 925-944.
  • 5Jungthawan S, Reunchan P, Limpijumnong S. Theoretical Study of Strained Porous Graphene Structures and Their Gas Separation Properties [J]. Carbon, 2013, 54:359-364.
  • 6Davarzani H, Marcoux M, Costeseque P, et al. Experi- mental Measurement of the Effective Diffusion and Ther- modiffusion Coefficients for Binary Gas Mixture in Porous Media [J]. Chemical Engineering Science, 2010, 65(18): 5092-5104.
  • 7Mu D Q, Liu Z S, Huang C, et al. Prediction of the Effec- tive Diffusion Coefficient in Random Porous Media Using the Finite Element Method [J]. Journal of Porous Mate- rials, 2007, 14(1): 49-54.
  • 8Boving T B, Grathwohl P. Tracer Diffusion Coefficients in Sedimentary Rocks: Correlation to Porosity and Hy- draulic Conductivity [J]. Journal of Contaminant Hydrol- ogy, 2001, 53(1/2): 85-100.
  • 9Penman H L. Gas and Vapour Movements in the Soil: II. The Diffusion of Carbon Dioxide Through Porous Solids [J]. The Journal of Agricultural Science, 1940, 30(04): 570-581.
  • 10Zheng Q, Yu B M, Wang S F, et al. A Diffusivity Model for Gas Diffusion Through Fractal Porous Media [J]. Chemi- cal Engineering Science, 2012, 68(1): 650-655.

共引文献1

同被引文献37

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部