期刊文献+

基于无人机视觉的电力系统损坏监测 被引量:4

Monitoring damage of power system based on UAV vision
原文传递
导出
摘要 为提高电力系统监测和故障诊断能力,结合无人机的无线遥感视觉监测技术进行电力系统实时监测方法研究,提出一种基于无人机视觉信息融合和Harris角点检测技术的电力系统损坏监测方法。采用远程无人机红外遥感扫描技术进行电力系统分布式图像采集,对采集的无人机红外遥感图像进行块分割和向量量化处理,对提取的视觉图像量化特征进行信息融合,结合Harris角点检测方法提取电力系统损坏部位的异常分布特征,实现电力系统损坏部位的准确定位识别。仿真结果得知,采用该方法进行无人机视觉下的电力系统损坏监测的准确性较高,实时性较好,对损坏点的定位准确性较好。 In order to improve the power system damage is monitoring and fault diagnosis ability of real-time monitoring method of power system based on wireless remote sensing visual monitoring technology of UAV, monitoring method of damage to the power system of a UAV visual detection technology based on information fusion and Harris corner. The UAV remote infrared remote sensing technology for distributed scanning the image acquisition of power system, the UAV infrared remote sensing image block segmentation and vector quantization acquisition and processing, information fusion on quantitative characteristics of the visual image, abnormal distribution of feature extraction of power system damage with Harris corner detection, accurate positioning to achieve identification of power system damage. The simulation results show that the method for monitoring high accuracy without damage of power system under the visual, real-time, loss of Good point positioning accuracy.
出处 《自动化与仪器仪表》 2018年第3期169-172,共4页 Automation & Instrumentation
关键词 无人机视觉 电力系统 损坏 检测 特征提取 UAV vision power system damage detection feature extraction
  • 相关文献

参考文献9

二级参考文献68

  • 1张引.基于空间分布的最大类间方差牌照图像二值化算法[J].浙江大学学报(工学版),2001,35(2):219-219. 被引量:39
  • 2黄文辉,陈仁雷,张家谋.数字视频图像质量客观测量方法的改进与实现[J].北京邮电大学学报,2005,28(4):87-90. 被引量:26
  • 3Sauvola J, Pietikainen M. Adaptive document image binarization [ J ]. Pattern Recognition,2000,33 ( 2 ) :225 - 236.
  • 4Sahoo P K, Soltani S, Wong A K C, et al. Survey of thresholding tech- niques[ J]. Computer Graphics, Vision and Image Processing, 1988 (41) :233 -260.
  • 5Trier, Jain Ak. Goal-directed evaluation of binarization methods [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1995,17 ( 12 ) : 1191 - 1201.
  • 6Aly H A, Dubois E. Image up-sampling using total-variation regularization with a new observation model. IEEE Transactions on Image Processing, 2005, 14(10): 1647-1659.
  • 7Babacan S D, Molina R, Katsaggelos A K. Total variation super resolution using a variational approach. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, USA: IEEE, 2008. 641-644.
  • 8Sen P, Darabi S. Compressive image super-resolution. In: Proceedings of the 43rd Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2009. 1235-1242.
  • 9Yang J C, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
  • 10Yang S Y, Sun F H, Wang M, Liu Z Z, Jiao L C. Novel super resolution restoration of remote sensing images based on compressive sensing and example patches-aided dictionary learning. In: Proceedings of the 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping. Xiamen, China: IEEE, 2011. 1-6.

共引文献174

同被引文献55

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部