期刊文献+

基于小波系数统计特征的光学元件粗糙度声发射监测研究 被引量:1

The development of acoustic emission monitoring system for the roughness of optical element based on statistical parameter of wavelet coefficients
下载PDF
导出
摘要 表面粗糙度是光学元件表面质量的重要评价指标之一。传统的粗糙度检测方法大多采用离线方法,无法实现在线表征。为此讨论了一种基于声发射检测技术的表面粗糙度监测方法,利用改进的表面粗糙度检测装置,采集不同粗糙度下声发射信号;由于传统方法存在一定的局限性,因此提出了基于小波分解系数有效值统计特征的表面粗糙度监测方法,通过对摩擦抛光的声发射信号进行特征提取,来辨识粗糙度。研究结果表明,利用该方法所提取出的特征可以对表面粗糙度进行有效区分,验证了其是光学元件表面粗糙度声发射监测的有效方法。 Surface roughness is one of the important factors to affect the surface quality of optical elements. Currently,most of the traditional monitoring methods are performed as offline,which cannot characterize the surface roughness quickly. The paper proposes a surface roughness monitoring method based on acoustic emission detecting technique. Based on the statistical characteristics of the root mean square( RMS) values of wavelet coefficients,it employs an enhanced surface roughness monitoring device to collect the acoustic emission signals from the surface of optical elements with the different roughness conditions,presents the surface roughness monitoring method to extract the features of the acoustic emission( AE) signals and identify the surface roughness conditions. The results show that the features extracted by the proposed method can effectively distinguish the different surface roughness conditions and be superior to some conventional methods.
出处 《机械设计与制造工程》 2018年第1期108-112,共5页 Machine Design and Manufacturing Engineering
基金 国家自然科学基金资助项目(51705349)
关键词 光学元件 声发射 小波系数 统计特征 optical elements acoustic emission wavelet coefficient statistical parameter
  • 相关文献

参考文献5

二级参考文献44

  • 1陈明,浦学锋,张幼桢.声发射技术在磨削烧伤预报中的应用研究[J].机械科学与技术(江苏),1994,23(1):15-17. 被引量:5
  • 2徐彦廷,戴光,张宝琪.16MnR钢制拉伸试样在常、高温下的声发射特性试验研究[J].大庆石油学院学报,1995,19(2):75-77. 被引量:7
  • 3侯琳熙,王靖岱,阳永荣,胡晓萍.气固流化床中声发生机理及在工业装置中的应用[J].化工学报,2005,56(8):1474-1478. 被引量:27
  • 4[1]Witehouse D J.Comparison between stylus and optical methods for measuring surface[J]. Annals of the CIRP, 1988, 37: 649-653.
  • 5[2]Dornfeld A D. Neural network sensor fusion for tool condition monitoring[J]. Annals of the CIRP, 1990, 39: 101-105.
  • 6[3]Heiple C R, Carpenter S H.Acoustic emission produced by deformation of metals and alloys a review: Part I and Part II[J]. J Acoustic Emission, 1987, 6 (3): 177-204.
  • 7[5]Suiě E, Grabec I. Application of a neural network to the estimation of surface roughness from AE signals generated by friction process[J]. Int J mach Tools Manufacture, 1995, 35 (8): 1 077-1 086.
  • 8[6]Webster J, Marinescu I, Bennett R. Acoustic emission for control and monitoring of surface integrity during grinding[J]. Annals of the CIRP, 1994, 43: 299-304.
  • 9D. J. Witehouse. Comparison between stylus and optical methods for measuring surface[J]. Annals of the CIRP, 37,649 -653(1988).
  • 10A. D. Dornfeld. Neural network sensor fusion for tool condition monitoring[J]. Annals of the CIRP, 39, 101 - 105 (1990).

共引文献57

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部