期刊文献+

固载离子液体的制备及其在羰基化反应中的应用 被引量:3

Preparation of supported ionic liquid and its application in carbonylation reaction
下载PDF
导出
摘要 传统羰基化反应大多是在均相催化条件下进行的,但均相催化剂普遍存在催化剂与产物分离的难题,离子液体两相催化在一定程度上解决了催化剂从产物中分离的问题,但仍存在离子液体用量较大、反应效率低等缺点。固载离子液体相催化兼具均相催化和多均相催化的优点,将载体高比表面积的特点和离子液体优良的溶解性有机结合起来,在显著减少离子液体用量的同时,极大提高了催化反应的活性和选择性。系统总结了固载离子液体相催化的构建方法,综述了固载离子液体相催化在烯烃氢甲酰化、卤代芳烃羰基化、含N化合物羰基化和甲醇羰基化反应中的应用,并简要分析了固载离子液体相催化目前存在的问题及今后的发展方向。 Most of the traditional carbonylation reactions were carried out under homogeneous catalysis conditions.However,the homogeneous catalyst has a common problem of separating the catalyst from the product.Although the ionic liquid two-phase system solves this problem to a certain extent,there are still some disadvantages such as large amount of ionic liquid were used,the reaction efficiency was low and so on.Supported ionic liquid phase catalysis have the advantages of both homogeneous and heterogeneous catalysis,combining the characteristics of the specific surface area of the carrier with the excellent solubility of the ionic liquid,significantly reducing the amount of ionic liquid while greatly improving the activity and selectivity.This article systematically summarizes the construction methods of supported ionic liquid phase catalysis,and summarizes the application of supported ionic liquid phase catalysis in hydroformylation of olefins,carbonylation of halogenated hydrocarbons,carbonylation of containing N compounds and carbonylation of methanol.The existing problems and future development trend of supported ionic liquid phase catalysis are analyzed.
出处 《化工科技》 CAS 2018年第1期57-62,共6页 Science & Technology in Chemical Industry
基金 国家自然科学基金项目(21576144) 山东省自然科学基金项目(ZR2014BM009)
关键词 固载离子液体相催化 羰基化反应 离子液体 Supported ionic liquid phase catalysis Carbonylation reaction Ionic liquid
  • 相关文献

参考文献2

二级参考文献49

  • 1章维超,赵卫娟,卓广澜,姜玄珍.离子液体催化甲苯选择性羰基化反应合成对甲基苯甲醛[J].催化学报,2006,27(1):36-40. 被引量:14
  • 2T Wehon. Chem. Rev. , 1999, 99:2071 -2083.
  • 3A C Cole, J L Jensen, I Ntai et al. J. Am. Chem. Soc. , 2002, 124, 5962 -5963.
  • 4N Yan, Y Yuan, R Dykema et al. Angew. Chem. Int. Ed. , 2010, 49(32) : 5549 -5553.
  • 5W Wardencki, J Curyto, J Namie-nik. J. Biochem. Bioph. Methods, 2007, 70(2): 275-285.
  • 6P Matejtschuk, K Malik, C Duru et al. Am. Pharm. Rev. , 2009, 12: 12-18.
  • 7X Duan, M Zhang, A S Mujumdar et al. Drying Technol. , 2010, 28:444 N453.
  • 8J J Sehwegman. Innov. Pharm. Teehnol. , 2009, 29:72 - 74, 76 - 77.
  • 9L A Gatlln, T Auffret, E Y Shalaev et al. Drugs Pharm. Sci. , 2008, 175 : 177 - 195.
  • 10S Werner, N Szesni, M Kaiser et al. Chem. Eng. Technol. , 2012, 35 (11) :1962 - 1967.

共引文献11

同被引文献48

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部