期刊文献+

列车轮轨黏着力在线估测计算方法 被引量:3

Online Estimation Algorithm of Adhesive Force for Train Wheeltrack
下载PDF
导出
摘要 针对列车的制动防滑控制,提出黏着力的在线估测计算方法.因为黏着力不易测量,如何实时监测黏着力大小以便充分利用轮轨黏着是防滑控制的关键.建立了轮对动力学模型,并采用卡尔曼滤波器、扩张状态观测器等,以轴速和车轮等效夹紧力作为可输入量,设计了5种黏着力在线估测计算方法.采用Simulink软件平台,设置了信号噪声污染和传输延迟,并仿真了黏着力不变和黏着力变化两种工况,结果显示5种算法都能对黏着力进行估测,但综合黏着力估测的响应时间和最大误差两个指标来看,非线性扩张状态观测算法对黏着力的估测效果是最好的.最后,采用实测数据,进一步验证了算法对黏着力估测的准确性. Novel on-line estimation algorithms of train adhesive force were proposed for anti-skid control. Since it is difficult to measure the adhesive force, it is of significance to make full use of adhesive force in anti-skid control. In this paper, a wheel set dynamic model is established first. Then, using the Calman filter, extended state observer and so on, five online estimation algorithms for train adhesive force were designed, where the axle speed and the equivalent clamping force were the input. Furthermore, with the simulink software platform, signal noise contamination and transmission delay were set, and two conditions of constant adhesive force and variable adhesive force were simulated. Simulation results reveal that used to estimate the adhesive the five algorithms could be force, but when the response time and the maximum error of adhesive force estimation are taken into account, the nonlinear expansion state observation algorithm is the best algorithm for adhesive force estimation. Finally, the accuracy of the estimation algorithm is further validated by using measured data.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第3期354-358,388,共6页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(U1534205) "十二五"国家科技支撑计划(2015BAG12B01)
关键词 黏着力 状态观测算法 轮轨关系 防滑控制 adhesive force state observation algorithm wheel-rail relationship anti-skid control
  • 相关文献

参考文献3

二级参考文献27

  • 1徐志根,白裔峰,王辉,肖建.电力机车模糊间接自适应粘着控制[J].系统仿真学报,2006,18(11):3192-3195. 被引量:3
  • 2张曙光.铁路高速列车应用基础理论与实践[M].北京:科学出版社,2007:219.
  • 3Ohishi K, Nakano K, Miyashita I and Yasukawa S. Antislip control of electric motor coach based on disturbance observer[C]. Proceedings of 5th International Workshop on Advanced Motion Control. 1998:580-585.
  • 4Ohishi K, Nakano K, Miyashita I and Yasukawa S. An approach of anti-slip readhesion control of electric motor coach based on first order disturbance observer[C]. Proceedings of Japan Industry Applications Society Conference. 1999, (1):369-374.
  • 5Polach O. Influence of locomotive traction effort on the forces between wheel and rail[J]. Vehicle system dynam- ics supplement, 2001, (35):7-22.
  • 6Takaoka Y, Kawamura A. Disturbance observer based adhesion control for Shinkansen[C]. IEEE, Proceedings of 6th International Workshop on Advanced Motion Control. 2000:169-174.
  • 7Ishikawa Y, Kawamura A. Maximum adhesive force control in super high speed train[C]. IEEE, Proceedings of Power Conversion Conference. 1997:951-954.
  • 8YAO Yuan, ZHANG Hongjun, LI Yeming. The Dynamics Study of Locomotive under Saturated Adhesion [J]. Vehicle SystemDynamics, 2011, 49 (8): 1321-1338.
  • 9HUANG Jingchun, XIAO Jian, BAI Yifeng, et al. Optimized Adhesion Control of Electric Locomotives Based on Wavelet Analysis and Cloud Model[C]//International Conference on Transportation Engineering 2007. Chengdu: Southwest Jiaotong University, 2007: 3209-3214.
  • 10NEMANJA ZORI, ALEKSANDAR SIMONOVI, ZORAN MITROV1, et al. Active Vibration Control of Smart Composite Beams Using PSO-Optimized Self-Tuning Fuzzy Logic Controller [J]. Journal of Theoretical and AppliedMechanics, 2013, 51 (2): 275-286.

共引文献14

同被引文献66

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部