期刊文献+

不控整流交错并联斩波变换器的电压前馈控制

Voltage Feedforward Control for Uncontrolled Rectified Interleaving Parallel Chopper Converter
下载PDF
导出
摘要 针对大功率直流600 V供电,提出单相不控整流+四相交错并联斩波拓扑。为抑制不控整流产生的脉动直流电压对输出电压平稳的影响,首先建立了斩波变换器的等效电路,并推导出输入到输出的传递函数。其次依据前馈控制理论,将中间直流电压脉动分解成前馈通道和扰动通道,增加前馈通道来抵消扰动通道,进而给出了变换器的前馈调节规律。前馈只需在软件中实时计算前馈占空比,容易实现。仿真验证了算法的有效性。最后开发了一套400 kW样机,实物实验表明:中间直流电压以周期10 ms,幅值1 050~1 250 V波动时,前馈控制能有效抑制波动,将输出电压600 V波动控制在±5 V以内。 For high power direct current 600 V power supply,a single-phase uncontrolled rectifier+four-phase interleaving parallel chopper topology is proposed.In order to suppress the disturbance effect on the output voltage of the uncontrolled rectifier pulsating voltage, first of all, the equivalent circuit of the chopper converter is established and the transfer function from input to the output is deduced.Then, according to the theory of feedforward control, the intermediate voltage is decomposed into the feedforward channel and the disturbance channel, and the feedforward channel is added to offset the disturbance channel and the feedforward regulation rule of the converter is given.Feedforward only need to calculate the feedforward duty cycle real time in the software,it is easy to implement.Simulation proves the validity of the algorithm.Finally, a set of 400 kW prototype is developed.The physical experiments shows that the feed-forward can suppress fluctuation effectively when the period of intermediate voltage is 10 ms and the amplitude is 1 050-1 250 V and the fluctuation of output 600 V is controlled within ±5 V.
作者 李昊 刘海涛
出处 《电力电子技术》 CSCD 北大核心 2018年第3期119-120,124,共3页 Power Electronics
关键词 变换器 不控整流 交错并联 converter uncontrolled rectifier interleaving parallel
  • 相关文献

参考文献3

二级参考文献55

  • 1王永,沈颂华,吕宏丽.基于单周控制开关变换器的研究[J].电力电子技术,2005,39(4):38-40. 被引量:2
  • 2王建华,张方华,龚春英,陈小平.电压控制型Buck DC/DC变换器输出阻抗优化设计[J].电工技术学报,2007,22(8):18-23. 被引量:23
  • 3PressmanAI.开关电源设计[M].3版.王志强译.北京:电子工业出版社,2010:71-96.
  • 4Ren X, Ruan X, Qian H, et al. Three-mode dual-frequency two-edge modulation scheme for four-switch Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2009, 24(2): 499-509.
  • 5Yao C, Ruan X, Wang X. Isolated Buck-Boost dc-dc converters suitable for wide input-voltage range[J]. IEEE Transactions on Power Electronics, 2011, 26(9): 2599-2613.
  • 6Huang P C, Wu W Q, Ho H H, et al. Hybrid Buck-Boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2010, 25(3): 719-730.
  • 7Lee Y J, Khaligh A, Chakraborty A, et al. A compensation technique for smooth transitions in a noninverting Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2009, 24(4): 1002-1016.
  • 8Lee Y J, Khaligh A, Chakraborty A, et al. Digital combination of Buck and Boost converters to control a positive Buck-Boost converter and improve the output transientsr[J]. IEEE Transactions on Power Electronics, 2009, 24(5): 1267-1279.
  • 9Sahu B, Rincon-Mora G A. A low voltage, dynamic, noninverting, synchronous Buck-Boost converter for portable applications[J]. IEEE Transactions on Power Electronics, 2004, 19(2): 443-452.
  • 10Qu H, Zhang Y, Yao Y, et al. Analysis of Buck-Boost converter for fuel cell electric vehicles[C]//IEEE International Conference on Vehicular Electronics and Safety. IEEE, 2006: 109-113.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部