期刊文献+

Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size 被引量:3

Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size
原文传递
导出
摘要 To understand the relation between different nanostructures and thermal properties, a simple yet effective model is in demand for characterizing the underlying phonons and electrons scattering mechanisms. Herein, we make a systematic review on the newly developed thermal reffusivity theory. Like electrical resistivity which has been historically used as a theory for analyzing structural domain size and defect levels of metals, the thermal reffusivity can also uncover phonon behavior, structure defects and domain size of materials. We highlight that this new theory can be used for not only metals, but also nonmetals, even for amorphous materials. From the thermal reffusivity against temperature curves, the Debye temperature of the material and the ideal thermal diffusivity of single perfect crystal can be evaluated. From the residual thermal reffusivity at the 0 K limit, the structural thermal domain (STD) size of crystalline and amorphous materials can be obtained. The difference of white hair and normal black hair from heat conduction perspective is reported for the first time. Loss of melanin results in a worse thermal protection and a larger STD size in the white hair. By reviewing the different variation of thermal reffusivity against decreasing temperature profiles, we conclude that they reflected the structural connection in the materials. Ultimately, the future application of thermal reffusivity theory in studying 2D materials and amorphous materials is discussed. To understand the relation between different nanostructures and thermal properties, a simple yet effective model is in demand for characterizing the underlying phonons and electrons scattering mechanisms. Herein, we make a systematic review on the newly developed thermal reffusivity theory. Like electrical resistivity which has been historically used as a theory for analyzing structural domain size and defect levels of metals, the thermal reffusivity can also uncover phonon behavior, structure defects and domain size of materials. We highlight that this new theory can be used for not only metals, but also nonmetals, even for amorphous materials. From the thermal reffusivity against temperature curves, the Debye temperature of the material and the ideal thermal diffusivity of single perfect crystal can be evaluated. From the residual thermal reffusivity at the 0 K limit, the structural thermal domain (STD) size of crystalline and amorphous materials can be obtained. The difference of white hair and normal black hair from heat conduction perspective is reported for the first time. Loss of melanin results in a worse thermal protection and a larger STD size in the white hair. By reviewing the different variation of thermal reffusivity against decreasing temperature profiles, we conclude that they reflected the structural connection in the materials. Ultimately, the future application of thermal reffusivity theory in studying 2D materials and amorphous materials is discussed.
出处 《Frontiers in Energy》 SCIE CSCD 2018年第1期143-157,共15页 能源前沿(英文版)
关键词 thermal reffusivity theory phonon behavior structure defects structural thermal domain (STD) size 2Dmaterial amorphous material thermal reffusivity theory, phonon behavior, structure defects, structural thermal domain (STD) size, 2Dmaterial, amorphous material
  • 相关文献

同被引文献20

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部