期刊文献+

Realization of energy-saving glass using photonic crystals

Realization of energy-saving glass using photonic crystals
原文传递
导出
摘要 This work successfully developed an energy- saving glass with wavelength selectivity. The glass is composed of a SiO2 substrate and two layers of three- dimensional photonic crystals. Each crystal is composed of identical and transparent polystyrene spheres after their self-assembling. The glass then possesses dual photonic band gaps in the near-infrared region to suppress penetration of thermal radiation. Experimental results show that the energy-saving glass decreases temperature increment in a mini-house. Moreover, the temperature after thermal equilibrium is lower than that inside a counterpart using ordinary glass. This work successfully developed an energy- saving glass with wavelength selectivity. The glass is composed of a SiO2 substrate and two layers of three- dimensional photonic crystals. Each crystal is composed of identical and transparent polystyrene spheres after their self-assembling. The glass then possesses dual photonic band gaps in the near-infrared region to suppress penetration of thermal radiation. Experimental results show that the energy-saving glass decreases temperature increment in a mini-house. Moreover, the temperature after thermal equilibrium is lower than that inside a counterpart using ordinary glass.
出处 《Frontiers in Energy》 SCIE CSCD 2018年第1期178-184,共7页 能源前沿(英文版)
关键词 energy-saving glass photonic crystals poly-styrene spheres SELF-ASSEMBLY energy-saving glass, photonic crystals, poly-styrene spheres, self-assembly
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部