期刊文献+

基于小波低频分量的量化择时策略及仿真模拟 被引量:2

Quantitative Timing Strategy and Its Simulation Based on Wavelet Low Frequency Component
下载PDF
导出
摘要 文章运用Best Basis Selection(BBS)算法选取最优小波包基,对上证综指收盘价进行小波包非线性阈值消噪,在消除随机性干扰的基础上,针对传统均线策略买卖信号滞后性的不足,根据不同分解水平的小波低频分量能够反映信号基本和次级趋势且不具滞后性的特点,提出了一种基于小波低频分量的量化择时策略,并对该策略和传统的均线策略分别用R语言进行仿真模拟交易和回测,实验表明在类似风险的情况下,该策略在提示基本和次级趋势买卖信号的同时可以缩短交易信号的滞后性,具有更好的投资表现。 Based on Best Basis Selection(BBS) algorithm, this paper selects the optimal wavelet package basis to denoise the wavelet packet nonlinear threshold of the Shanghai Composite Index closing price. Eliminating the random interference, aiming at the shortcoming of the buy-sell signal hysteresis of the traditional average strategy, and according to the characteristics that wavelet low frequency component of different decomposition level is able to reflect the basic signal and the secondary trend and even has no lag, this paper proposes a quantitative timing strategy based on wavelet low frequency component, and uses R language to make a trading simulation and back-test of the strategy and the traditional average strategy respectively. Experiment results show that in the case of a similar risk, the proposed quantitative strategy presents a buy-sell signal of the basic and a secondary trend,and at the same time is able to shorten the lag of the trading signal, thus having a better investment performance.
出处 《统计与决策》 CSSCI 北大核心 2018年第4期143-147,共5页 Statistics & Decision
基金 教育部人文社会科学研究青年项目(16XJC630001) 陕西省自然科学基金资助项目(2015JQ7278) 陕西省教育厅科研项目(14JK1693)
关键词 小波包变换 金融时序消噪 小波低频分量 量化择时策略 wavelet packet transform financial time series denoising wavelet low frequency component quantitative timing strategy
  • 相关文献

参考文献1

二级参考文献19

  • 1纪跃波.小波包的频率顺序[J].振动与冲击,2005,24(3):96-98. 被引量:31
  • 2吴富梅,杨元喜.基于小波阈值消噪自适应滤波的GPS/INS组合导航[J].测绘学报,2007,36(2):124-128. 被引量:57
  • 3郭晓霞,杨慧中.基于多阈值的小波包去噪[C]//第27届中国控制会议.北京:北京航空航天大学出版社,2008.
  • 4DAUBECHIES I. Ten Lectures on Wavelets[M]. SIAM: Society for Industrial and Applied Mathematics, 1992: 312-313.
  • 5YI TingHua, LI Hongnan, GU Ming. Experimental Assessment of High-rate GPS Receivers for Deformation Monitoring of Bridge[J]. Measurement, 2012, 46:420-432.
  • 6LI Qingwu, HE Chunyuan. A New Thresholding Method in Wavelet Packet Analysis for Image De noising[C]// Proceedings of IEEE International Conference on Mechatronics and Automation. Piscatawan: IEEE, 2006: 2074-2078.
  • 7OGAJA C, RIZOS C, WANG Jingling, et al. A Dynamic GPS System for On-line Structural Monitoring [C] // International Symposium on Kinematic Systems in Geodesy, Geomatics & Navigation (KIS 2001). Banff: [s. n. ],2001, 5-8.
  • 8VIRMANI J, KUMAR V, KALRA N, et al. SVM-Based Characterization of Liver Ultrasound Images Using Wavelet Packet Texture Descriptors [J]. Journal of Digital Imaging, 2013: 1-14.
  • 9吴招才,刘天佑.地震数据去噪中的小波方法[J].地球物理学进展,2008,23(2):493-499. 被引量:68
  • 10曲国庆,党亚民,章传银,苏晓庆.小波包消噪方法分析及改进[J].大地测量与地球动力学,2008,28(4):102-106. 被引量:21

共引文献82

同被引文献22

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部