期刊文献+

车辆随机荷载作用下半刚性路面的动响应分析

Dynamic Response Analysis of Semi Rigid Pavement Under Random Vehicle Loading
下载PDF
导出
摘要 路面车辆的多样性和路面的不平整性会使路面行车荷载具有随机性。采用ANSYS建立半刚性路面分析模型,利用MATLAB生成随机行车荷载,研究了不同速度、荷载幅值与方差的随机荷载作用下路面的动响应。研究表明,当行车速度一定时,路面动变形随荷载均值和方差的增加而增大;荷载均值越大,加载过后的路面回弹波动越强;当荷载幅值与方差一定时,行车速度变化对路面的影响较小。 The diversity of pavement vehicles and the unevenness of pavement can make the road traffic load random.A semi rigid pavement analysis model is established by using ANSYS,and random traffic loads are generated by using MATLAB. The dynamic responses of pavement subjected to random loads at different speeds,amplitudes and variances are studied. Research shows that,when the driving speed is constant,the dynamic deformation of pavement increases with the mean and variance of load;the greater the mean load,the stronger the rebound of the pavement after loading;when the load amplitude and variance are constant,the change of driving speed has little influence on the pavement.
作者 邢渊 刘泽
出处 《建筑技术开发》 2018年第4期80-82,共3页 Building Technology Development
基金 浙江省交通行业建设协会重点项目(2015A01)
关键词 随机荷载 半刚性路面 ANSYS 动响应分析 random load semi rigid pavement ANSYS dynamic response analysis
  • 相关文献

参考文献6

二级参考文献35

  • 1孙璐,邓学钧.移动的线源平稳随机荷载激励下梁的随机响应[J].力学学报,1997,29(3):365-368. 被引量:6
  • 2舒富民,钱振东.移动荷载作用下沥青路面的动力响应分析[J].交通运输工程与信息学报,2007,5(3):90-95. 被引量:22
  • 3黄仰贤.路面分析与设计[M].北京:人民交通出版社,1998..
  • 4沙爱民.半刚性路面材料结构与性能[M].北京:人民交通出版社,1997.
  • 5佩因,陈难先,赫松安.振动与波动物理学[M].北京:人民教育出版社,1980.
  • 6KENNEY J T. Steady-state Vibrations of Beam on Elastic Foundation for Moving Load[J]. Journal of Applied Mechanics, 1954,21 (4) : 359-364.
  • 7CEBON D. Handbook of Vehicle-road Interaction[M]. Heereweg:Swets & Zeitlinger,1999.
  • 8LIU Xiao-yun, SHI Chun-juan, CHEN Shui-jing. A Theory Research of Asphalt Pavement Dynamic Re- sponse Under Vehicle Random Stimulation[J]. Ap- plied Mechanics and Materials,2012,105(1):13-19.
  • 9MONZON L, BEYLKIN G, HEREMAN W. Com- pactly Supported Wavelets Based on Almost Interpo- lating and Nearly Linear Phase Filters (Coiflets)[J]. Applied and Computational Harmonic Analysis, 1999, 7(2) .-184-210.
  • 10DAUBECHIES I. Orthonormal Bases of Compactly Supported Wavelets[J]. Communications on Pure and Applied Mathematics, 1988,41(7) : 909-996.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部