期刊文献+

抑制风噪声的频点离散值加权GCC-PHAT时延估计算法 被引量:2

GCC-PHAT time difference estimation algorithm based on binary frequency weight with suppressing wind noise
下载PDF
导出
摘要 针对麦克风阵列使用GCC-PHAT算法估计信号到达时差对加性噪声敏感,以及基于信噪比估计的连续值加权GCC-PHAT算法无法消除环境中类似风噪声的变化噪声干扰的情况,提出了一种抑制风噪声的频点加权GCC-PHAT算法。通过分析已有算法的不足,新算法选择使用离散频点加权,并通过信号频点间相干性量化值和时域关联性计算权值,去除风噪声干扰频点;同时估计声源信号活跃度,调整算法运算量。实验表明,与已有的GCCPHAT算法相比,新算法能有效消除风噪声对估计结果的干扰,同时降低运算负载。 Aiming at the problems that GCC-PHAT algorithm is sensitive to additive noise and the weighted GCC-PHAT algorithm based on prior SNR can ′ t eliminate the jamming of non-stationary noise —— wind noise, an improved GCC-PHAT algorithm is presented. The improved algorithm utilizes the binary frequency weight calculated by magnitude of coherence and correlation in signal adjacent frames to eliminate frequency component disturbed by wind noise. Meanwhile, computational load of the algorithm would be modulated with voice activity according to binary weight. The experiment results show that the proposed algorithm can effectively suppress wind noise and significantly improve computational load.
作者 乔健 王建明
出处 《电子技术应用》 2018年第3期72-76,80,共6页 Application of Electronic Technique
关键词 广义互相关 到达时差 离散频点权值 风噪声 GCC TDOA binary frequency weight wind noise
  • 相关文献

参考文献2

二级参考文献23

  • 1R. Martin. Noise power spectral density estimation basedon optimal smoothing and minimum statistics [ J]. IEEETransactions on Speech and Audio Processing, 2001, 9(5): 504-512.
  • 2I. Cohen. Noise estimation by minima controlled recur-sive averaging for robust speech enhancement [ J]. IEEESignal Processing Letters, 2002, 9(1): 12-15.
  • 3I. Cohen. Noise spectrum estimation in adverse environ-ments :improved minima controlled recursive averaging[J] . IEEE Transactions on Speech and Audio Process-ing, 2003, 11(5) : 466-475.
  • 4S. Rangachari and P. Loizou. A noise estimation algo-rithm for highly nonstationary environments [ J]. SpeechCommunication, 2006, 28 : 220-231.
  • 5X. Sun, K. -C. Yen, and R. Alves. Robust noise esti-mation using minimum correction with harmonicity control[C]. Proceedings of Interspeech 2010. Makuhari, Ja-pan: International Speech Communication Association,2010:1085-1088.
  • 6ITU-T. G. 160: 2008 , Voice enhancement devices [ S].
  • 7P. Loizou. Speech enhancement based on perceptuallymotivated Bayesian estimators of the speech magnitudespectrum [ J] . IEEE Transactions on Speech and AudioProcessing, 2005, 13(5) : 857-869.
  • 8J. Sohn, N. S. Kim, and W. Sung. A statistical model-based voice activity detection [ J] . IEEE Signal Process-ing Letters, 1999,6(1); 1-3.
  • 9Y. Ephraim and D. Malah. Speech enhancement using aminimum mean-square error short-time spectral amplitudeestimator [ J]. IEEE Transactions on Acoustics,Speechand Signal Processing, 1984,ASSP-32(6) : 1109-1121.
  • 10B. -F. Wu and K. -C. Wang. Robust endpoint detectionalgorithm based on the adaptive band-partitioning spectralentropy in adverse environments [ J]. IEEE Transactionson Speech and Audio Processing, 2005, 13(5) ; 762-774.

共引文献5

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部