期刊文献+

基于优化的LSTSVM的多模态生理信号情感识别 被引量:3

Emotion recognition of multimodal physiological signals based on optimized LSTSVM
下载PDF
导出
摘要 采用最小二乘双支持向量机(LSTSVM)进行情感识别,针对LSTSVM模型的惩罚系数及核函数参数难以确定的问题,使用改进的萤火虫算法(MFA)来优选LSTSVM的各项参数,使分类器取得最优的性能。基于脑电、皮肤电、肌电和呼吸4种模态的生理信号,使用该算法进行情感识别,并与使用标准LSTSVM和粒子群LSTSVM算法的识别结果比较。仿真分析表明,提出的MFA-LSTSVM算法识别准确率更高,需要的训练时间更短。 The least squares twin support vector machine( LSTSVM) is used for emotion recognition. The penalty coefficients, and kernel function parameter of LSTSVM model are difficult to determine, so the modified firefly algorithm( MFA) is used to select the best parameters of the LSTSVM to achieve optimal performance. Based on four modal of physiological signals, which are EEG, skin electrical, electromyography and respiratory signal, the proposed algorithm is used for emotion recognition, and comparisons are made with standard LSTSVM and particle swarm optimization LSTSVM algorithm. Simulation results show that the proposed MFA-LSTSVM algorithm has higher accuracy and shorter training time.
作者 金纯 陈光勇
出处 《电子技术应用》 2018年第3期112-116,共5页 Application of Electronic Technique
基金 重庆市重点产业共性关键技术创新专项(cstr2015zdcy-ztzx4008)
关键词 最小二乘双支持向量机 萤火虫算法 情感识别 多模态生理信号 least squares twin support vector machine firefly algorithm emotion recognition multimodal physiological signal
  • 相关文献

参考文献1

二级参考文献10

  • 1Rodammer F A, White K P.A recent survey of production scheduling[J].IEEE Trans on System, Man and Cybem,1988,18(6):841-851.
  • 2Yang X S.Nature-inspired metaheuristic algorithm[M].[S.l.]: Luniver Press, 2008 : 83-96.
  • 3Lukasik S, Zak S.Firefly algorithm for continuous con- strained optimization tasks[C]//ICCCI'09,2009,5796:97-106.
  • 4Yang X S.Firefly algorithm,stochastic test functions and de- sign optimization[J].Bio-Inspired Computation,2010,2:78-84.
  • 5Yang X S,Deb S.Eagle strategy using levy walk and fire- fly algorithms for stochastic optimization[J].Studies in Com- putational Intelligence, 2010,284: 101-111.
  • 6Yang X S.Firefly algorithms for multimodal optimization[C]// Lecture Notes in Computer Science,2009,5792:169-178.
  • 7Sayadi M K, Ramezanian R, Ghaffari-Nasab N.A discrete firefly meta-heuristic with local search for makespan mini- mization in permutation flow shop scheduling problems[J]. International Journal of Industrial Engineering Computa- tions, 2010.
  • 8刘胜辉,王丽红.求解车间作业调度问题的混合遗传算法[J].计算机工程与应用,2008,44(29):73-75. 被引量:5
  • 9王书锋,邹益仁.车间作业调度(JSSP)技术问题简明综述[J].系统工程理论与实践,2003,23(1):49-55. 被引量:47
  • 10王秀利,吴惕华,刘磊.一种求解单机成组作业优化调度的启发算法[J].计算机仿真,2003,20(2):48-50. 被引量:8

共引文献28

同被引文献25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部