期刊文献+

PU场景下基于迁移学习的软件缺陷预测 被引量:1

Software defect prediction based on transfer learning in PU scenario
下载PDF
导出
摘要 为降低软件缺陷预测对标注样本的需求,将软件缺陷预测问题模型化为PU场景下的迁移学习问题。不对要进行软件缺陷预测的目标领域样本标注类别,只对跨工程的源领域数据集标注部分正例样本,结合数据引力方法基于样本进行迁移学习,利用贝叶斯理论在源领域缺陷数据集和目标数据集上估算概率参数,构建软件缺陷预测算法TPAODE。实验结果表明,TPAODE算法比PNB和PTAN算法具有更好的缺陷预测性能,仅需标注少量正例样本的跨项目缺陷数据,即可具有较好的软件缺陷预测性能。 To reduce the requirement for labeled defect samples,the problem of software defect prediction was modeled into transfer learning problems in PU learning scenario.The target defect dataset was not labeled,while some of positive samples of source defect dataset were justly labeled,data gravity method was used to transfer cross-project defect samples into target dataset,and probability estimators were estimated based on source and target datasets,so as to construct the software defect prediction algorithm TPAODE.Experimental result shows that the TPAODE algorithm has better prediction performance than traditional PU learning methods PNB and PTAN.With only small amount of positive samples from cross-project defect dataset,the algorithm has excellent software defect prediction performance.
出处 《计算机工程与设计》 北大核心 2018年第3期663-667,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61602388) 中央高校基本科研业务费专项基金项目(2452015193 2452015194 2452016081)
关键词 迁移学习 实例迁移 软件缺陷预测 正例未标注学习 贝叶斯算法 transfer learning instance transfer software defect prediction PU leaning Bayesian algorithms
  • 相关文献

参考文献2

二级参考文献86

  • 1聂林波,刘孟仁.软件缺陷分类的研究[J].计算机应用研究,2004,21(6):84-86. 被引量:39
  • 2Guo Lan, Ma Yan, Cukic B, et al. Robust prediction of fault-proneness by random forests E C ]//Proc of the 15 th International Symposium on Software Reliability Engineering. [ S. 1. ] : IEEE Press, 2004 : 417- 428.
  • 3Gondra I. Appi[ying machine learning to software fault-proneness pre- diction[J]. Journal of Systems and Software,2008,81 (2) :186- 195.
  • 4Li Ming, Zhang Hongyu, Wu Rongxin, et al. Sample-based software de- fect prediction with active and semi-supervised learning [ J ]. Automa- ted Software Engineering,2012,19(2) :201-230.
  • 5Lu Huihua, Cnkic B, Culp M. An iterative semi-supervised approach to software fau]tt prediction[ C ]//Proc of the 7th International Confe- rence on Predictive Models in Software Engineering. [ S. 1. ] : ACM Press,2011.
  • 6Letouzey F, Denis F, Gilleron R. Learning from positive and unlabeled examples[ C ]//Proc of the 1 l tth International Conference on Algo- rithmic Learning Theory. [ S. 1. ] :Springer,2000:71-85.
  • 7Chaula N V, Bowyer K W, Hall L O,et al. SMOTE:synthetic minority over-sampling 1Leehnique[ J]. Journal of Artificial Intelligence Re- search,2002,16(3) :321-357.
  • 8Breiman L. Bagging predictors [ J ]. Machine Learning, 1996,24 (2) :123-140.
  • 9Nasa/Wvu IV&V facility, metrics data program, available from [ EB/ OL]. (2007). http://mdp, ivv. nasa. gov.
  • 10Li Rengqing, Wang Shihai. An empirical study for software fault- proneness prediction with ensemble learning models on imbalanced data sets [ J ]. Journal of Software,2014,9 (3) :697-704.

共引文献5

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部