期刊文献+

基于像素自适应背景建模的运动目标分割 被引量:3

Moving object segmentation through pixel-based adaptive background modeling
下载PDF
导出
摘要 针对PBAS(pixel-based adaptive segmenter)算法存在的阈值更新不够灵活,难以消除鬼影,对阴影较为敏感的问题,提出一种改进的算法。采用非线性阈值调整机制,根据背景复杂度及时调整阈值;对像素被判定为前景点的次数进行控制,去除难以消失的鬼影点;对判定为前景的区域边界点进行二次对比,减少鬼影点;引入基于颜色不变量的阴影检测去除前景中的阴影区域,提高分割精度。在CDnet2014(ChangeDetection.net 2014)数据集上的测试结果表明,改进后的方法相比PBAS分割精度更高,能够很好地去除鬼影和阴影。 In view of the problems of PBAS,which are inflexible in threshold updating,difficult in handling ghost artifacts and sensitive to shadow,an improved approach was presented.Nonlinear threshold adjustment mechanism was applied to adjust the threshold timely according to the background complexity.The time of pixels classified as foreground was controlled to eliminate stubborn ghost artifacts.A second comparison was carried out for boundary points of foreground to reduce the ghost artifacts points.The shadow detection based on invariant color feature was introduced to tackle the shadow in foreground regions and improve the accuracy.The evaluation on CDnet2014 datasets shows that the improved method has superior accuracy over PBAS and it can handle the ghost artifacts and shadow.
出处 《计算机工程与设计》 北大核心 2018年第3期785-791,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61379106) 山东省自然科学基金项目(ZR2013FM036 ZR2015FM011) 浙江大学CAD&CG重点实验室开放基金项目(A1315)
关键词 自适应分割 视频分割 背景去除 阴影检测 背景建模 self-adaptive segmentation video segmentation background subtraction shadow detectio
  • 相关文献

参考文献1

二级参考文献28

  • 1Wixson L, et al. Detecting salient motion by accumulating directionally-consistent flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 774-780.
  • 2Karm ann K P, Moving object recognition using an adaptive background memory. The Netherlands: Elsevier Science Publishers, 1990: 289-307.
  • 3Friedman N, Russell S J. Image Segmentation in Video Sequences Approach: A Probabilistic approach//Proceedings of the Uncertainty in Artificial Intelligence UAI. Colorado, USA, 1997:175-181.
  • 4Fragkiadaki K, Shi Jian-Bo. Detection free tracking: Exploi- ting motion and topology for segmenting and tracking under cntanglement//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Colorado. USA, 2011:2073-2080.
  • 5Li Zong-Min, Zhong Liang-Liang, Liu Yu-Jie. Efficient fore- ground layer exlraetion in video//Proeeedings of the IEEE Pacific Rim Conference on Muhimedia Conference. Shanghai, China, 2010, 6297:319-329.
  • 6Collins R, Lipton A J, Kanade T, et al. A system for video surveillance and monitoring. Technical Report= CMURI-TR- 00112, Carnegie Melon University, Pittsburgh, Peen, America, 2000:1-68.
  • 7Elias Herrero-Jaraba, et al. Detected motion classification with a double-background and a Neighborhood based differ ence. Patern Recognition Letters, 2003, 24(12) : 2079 -2092.
  • 8Joaquin S, Hugo J-H. A double layer background model to detect unusual events//Proceedings of the Advanced Con- cepls for Intelligent Vision Systems-AClVS. Las Vegas, USA, 2007:406-416.
  • 9Arnell F, Petersson L. Fast object segmentation from a moving camera//Proceedings of the Intelligent Vehicles Symposium. Las Vegas, USA, 2005:136-141.
  • 10Yang Chang Jiang, Duraiswami R, DcMcnthon D. Mean- shift analysis using quasi-newton methods//Proceedings of the IEEE International Conference on Image Processing. Barcelona, Spain, 2003:447-450.

共引文献6

同被引文献12

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部