期刊文献+

旋转纹理不变模型下的快速人脸匹配方法 被引量:2

Method of fast face matching based on rotation texture invariant model
下载PDF
导出
摘要 为解决传统SIFT模型在人脸匹配时存在的相似区域误匹配问题并满足实时要求,提出一种RISIFTTF(rotation invariant SIFT with texture feature)模型下的快速人脸匹配方法。将RITF(rotation invariant texture feature)与SIFT融合,形成RISIFTTF模型,通过GPU对构建高斯差分金字塔和检测定位极值点等步骤并行加速。选取来自FERET和自采集的人脸库,对比优化前后的结果,对比结果表明,对于FERET库,配准率提高了8.23%-12.76%,加速比提高了5倍-6倍;对于自采集库,配准率提高了11.53%-14.21%,加速比提高了4倍-5倍,实现了对传统模型的优化与加速。 To solve the problem of the similar region mismatch and to meet the model, a fa-t face matching method based on RISIFTTF ( ro ta t io n invariant S IF T w i th texture feature) model was presented. The RISIFTTF model was formed which was the fusion of R IT F ( ro ta t io n invariant texture feature) and lel acceleration was used in some steps such as constructing the Gaussian difference pyramid as w e ltion of extreme points. The face database from F ERET and sel--collection were used to compare the results before and after opt-- mization. The results show th-t for the FERET face database, the registration rate is increased by 8. 23%-12. 76% and the speedup is improved by 5-6 times. F or self-collection,registration rate is increased by 11.increased by 4-5 times, achieving the acceleration and optimization of the traditional model.
出处 《计算机工程与设计》 北大核心 2018年第3期854-860,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61272147) 湖北省教育厅基金项目(B2015446)
关键词 人脸匹配 尺度不变特征(SIFT) 图像处理器(GPU) 并行计算 旋转纹理特征不变性 face matching scale-invariant feature transform (S IF T ) graphic processing u n it (G P U ) parallel computing ro-tation invariant texture feature
  • 相关文献

参考文献2

二级参考文献20

  • 1Suda R,Aoki T,Hirasawa S,et al.Aspects of GPU for general purpose high performance computing[C]//Proceedings of the Asia and South Pacific Design Automation Conference,2009:216-223.
  • 2Han T D,Abdelrahman T S.hiCUDA:High-level GPGPU programming[J].IEEE Transactions on Parallel and Distributed Systems,2011,22(1):78-90.
  • 3Abdi H,Williams L J.Principal component analysis[J].Wiley Interdisciplinary Reviews:Computational Statistics,2010,2(4):433-459.
  • 4Kriegel H P,Krger P,Schubert E,et al.A general framework for increasing the robustness of PCA-based correlation clustering algorithms[C]//Scientific and Statistical Database Management,2008:418-435.
  • 5Tuzel O,Porikli F,Meer P.Pedestrian detection via classification on riemannian manifolds[J].Pattern Analysis and Machine Intelligence,2008,30(10):1713-1727.
  • 6Pang Y,Yuan Y,Li X.Gabor-based region covariance matrices for face recognition[J].IEEE Transactions on Circuits and Systems for Video Technology,2008,18(7):989-993.
  • 7Leonardo De-Maeztu.Linear stereo matching[C]//In Proc of ICCV,2011:1708-1715.
  • 8Deng Caixia.Image edge detection algorithm based on improved canny operator[C]//International Conference on Wavelet Analysis and Pattern Recognition,2013:168-172.
  • 9Wang Xiangyang.Invariant image watermarking using multiscale Harris detector and wavelet moments[J].Computers&Electrical Engineering,2010,36(1):31-44.
  • 10Lowe D.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.

共引文献7

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部