期刊文献+

基于文献内容的图书推荐机制研究 被引量:9

Research on Book Recommendation Mechanism Based on Literature Content
原文传递
导出
摘要 每年发布的各种"好书榜单"已经大大超过了普通读者的阅读量,即图书在专家筛选后仍然存在信息过载的问题,需要进一步结合专家意见、群体智慧和个性化需求,构建更准确的基于文献内容的阅读推荐机制。文章引入了专家书目维、协同过滤维和情感分析维,通过"引入权重值—加权求和—计算比值"的算法步骤,分别得出专家推荐指数、协同推荐指数和情感推荐指数。文章认为该图书推荐机制既考虑了社会主流价值观的要求,也匹配了读者的个人阅读口味,能够把真正适合的好书推荐给读者。 The Books on the lists of the year has largely exceeded the reading quantity of ordinary readers,which means after the selections of experts the books still reflect the problem of information overloading,so we need to find a book recommendation mechanism based on literature content which combines with expert opinion, collective wisdom and personal needs. This article introduced the dimensions of expert recommendation, collaborative filtering and emotional analysis,and by calculation of weight values, weighted sum and ratio, got the three indexes of experts 'recommendation, collaborative recommendation and emotion recommendation. This article holds that the book recommendation mechanism not only takes into account the requirements of the mainstream values of society,but also matches the reader' s personal reading taste. So it can recommend the best books to the readers.
作者 张麒麟 姜霖
出处 《图书馆学研究》 CSSCI 北大核心 2018年第1期78-81,17,共5页 Research on Library Science
基金 西南大学中央高校基本科研业务费专项资金资助项目"基于文献内容的知识发现和阅读推荐策略研究"(项目批准号:SWU1709310) 重庆市教育科学十三五规划课题"基于大数据的在线课程推荐策略研究"(项目编号:2017-GX-256)的研究成果之一
关键词 文献内容 图书推荐 个性化推荐 literature content book recommendation personalized recommendation
  • 相关文献

参考文献11

二级参考文献127

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Begelman G, Keller P, Smadja F. Automated tag clustering: Improving search and exploration in the tag space [ C ]. In Proceedings of the Collaborative Web Tagging Workshop at WWW'06, 2006.
  • 3Kome S H. Hierarchical subject relationships in folksonomies [ D]. North Carolina: the University of North Carolina, 2005.
  • 4伊凡艾琳达.社会网络分析在信息科学中的应用和发展[OL].[2009-05-30].http://blog.zjol.com.cn/1185/viewspace-243513.
  • 5Wasserman S, Faust K. Social network analysis: Methods and applications [ M ]. Cambridge : Cambridge University Press, 1994.
  • 6Fan Bei, Liu Lu, Li Ming, et al. Knowledge recommendation based on social network theory [ C ]. In 2008 IEEE Symposium on Advanced Management of Information for Globalized Enterprises, 2008 : 322 - 324.
  • 7Shepitsen A, Gemmell J, Mobasher B, et al. Personalized recommendation in social tagging systems using hierarchical clustering [ C ]. In Proceedings of the 2008 ACM conference on Recommender systems, 2008 : 259 - 266.
  • 8Mcnee S M, Riedl J, Konstan J A. Being accurate is not enough: How accuracy metrics have hurt recommender systems [ C ]// Proceedings of the CHI' 06 Conference on Human Factors in Computing Systems. New York : ACM , 2006:1097 - 1101.
  • 9Zhou Tao, Kuscsik Z, Liu Jianguo, el al. Solving the apparent diversity - accuracy dilemma of recommender systems [ J ]. Proceedings of the National Academy of Sciences of the USA,2010, 107(10): 4511 -4515.
  • 10ltu Rong, Pu P. I telping users perceivc recommendation diversity [ C ]//Proceedings of the Workshop on Novelty and Diversity in Recommender Systems. New York: ACM , 2011:43-50.

共引文献199

同被引文献88

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部