期刊文献+

Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air

Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air
下载PDF
导出
摘要 To date, many efforts have been made to improve the performance of paintable carbon-based (PC-based) perovskite solar cells (PSCs). Though great progress has been achieved, their power conversion efficiencies are still relatively low compared with hole-transport-materials-based PSCs. General research on influencing factors of performance in PC-based PSCs is still insufficient. In this work, PC-based PSCs were fabricated in ambient air and four groups of controlled experi- ments were performed in which the PbI2 layers were prepared with or without antisolvent extraction treatment. These four groups of experiments were designed to find out the effect of different influencing factors on PC-based PSCs performance, for example, PbI2 residual, the surface morphology of the perovskite film, the surface roughness of the perovskite film, and the contact status of the perovskite/carbon electrode interface. With a systematic analysis, we demonstrated that the contact status of the perovskite/carbon electrode interface played a vital role in PC-based PSCs, and a fiat, smooth perovskite surface could help to improve this contact status significantly. Besides, on the precondition of a poor contact interface, no PbI2 residual and a good surface morphology only brought limited benefits to the performances of PC-based PSCs. To date, many efforts have been made to improve the performance of paintable carbon-based (PC-based) perovskite solar cells (PSCs). Though great progress has been achieved, their power conversion efficiencies are still relatively low compared with hole-transport-materials-based PSCs. General research on influencing factors of performance in PC-based PSCs is still insufficient. In this work, PC-based PSCs were fabricated in ambient air and four groups of controlled experi- ments were performed in which the PbI2 layers were prepared with or without antisolvent extraction treatment. These four groups of experiments were designed to find out the effect of different influencing factors on PC-based PSCs performance, for example, PbI2 residual, the surface morphology of the perovskite film, the surface roughness of the perovskite film, and the contact status of the perovskite/carbon electrode interface. With a systematic analysis, we demonstrated that the contact status of the perovskite/carbon electrode interface played a vital role in PC-based PSCs, and a fiat, smooth perovskite surface could help to improve this contact status significantly. Besides, on the precondition of a poor contact interface, no PbI2 residual and a good surface morphology only brought limited benefits to the performances of PC-based PSCs.
作者 Wei-Kang Xu Feng-Xiang Chen Gong-Hui Cao Jia-Qi Wang Li-Sheng Wang 许伟康;陈凤翔;曹功辉;王嘉绮;汪礼胜(Department of Physics Science and Technology, School of Science, Wuhan University of Technology)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期508-514,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.51702245) the Fundamental Research Funds for the Central Universities,China(Grant No.WUT:2017IB013)
关键词 influencing factors paintable carbon-based perovskite solar cells contact status influencing factors, paintable carbon-based perovskite solar cells, contact status
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部