期刊文献+

基于改进全卷积网络的小麦图像分割 被引量:4

Wheat Grain Image Segmentation Based on Improved Fully Convolutional Network
下载PDF
导出
摘要 针对漫水填充结合模板匹配的双面联合分割方法对小麦图像进行分割存在过分割以及欠分割现象,提出基于改进的全卷积网络的图像语义分割方法.该方法融入前二个池化层的输出信息作为Softmax层的输入,探讨并得出了只融入第二个池化层的输出信息的网络模型优于同时融入前两个池化层的网络模型,引入Batch Normalization层到网络层中,并且针对小麦图像的需要将原来的21类网络输出类别更换为2类输出.实验采用建立的小麦图像数据库,结果表明改进后的网络使得过分割和欠分割现象明显减少,分割效果得到了显著提升,并且使用F-measure定量分析了模型的有效性. Because the result of method used by the project group currently which is a combination of floodfill and template matching is poor,and there is also under-segmentation or over-segmentation,this paper proposes the application of fully convolutional networks in semantic segmentation for wheat images.Firstly,the output information of the second pool layer is integrated as the input of the Softmax layer.Then,the Batch Normalization layer is introduced into the network layer,and 21 classes of output of the network are changed into the output of the 2 classes because of the characteristics of wheat.And the paper uses the F-measure to evaluate the result.The experimental results show that the proposed network can improve the segmentation result.
出处 《计算机系统应用》 2018年第3期221-227,共7页 Computer Systems & Applications
基金 成都市科技惠民项目(2015-HM01-00293-SF) 四川大学研究生课程建设项目(2016KCJS5113)
关键词 分割 漫水填充 模板匹配 全卷积网络 BATCH NORMALIZATION segmentation floodfill template matching fully convolutional networks Batch Normalization
  • 相关文献

参考文献2

二级参考文献22

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2黄春艳,杨国胜,侯艳丽.基于颜色直方图和空间信息融合的图像分割算法[J].计算机工程与应用,2005,41(3):85-87. 被引量:19
  • 3C Becker,J Sala,K Tokusei,J C Latombe.Reliable navigationusing landmarks[C].Proceedings of 1995 IEEE International Con-ference on Robotics and Automation.May.1995:401-406.
  • 4M V Lieshout.Markov Point Processes and Their Applications[M].London:Imperial College Press,2000.
  • 5F Lafarge,G Gimelfarb,X Descombes.Geometric Feature Extrac-tion by a Multi-marked Point Process[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2010,69(3):1597-1609.
  • 6D Cremers,S J Osher,S Soatto.Kernel Density Estimation andIntrinsic Alignment for Shape Priors in Level Set Segmentation[J].International Journal of Computer Vision,2006,50(69):335-351.
  • 7G Bradski,A Kaebler.Learning OpenCV[M].California:O'Reilly Media,Inc.,2008.
  • 8P Heckbert.Grapchics Gems(Vol.1)[M].New York:Academ-ic Press,1990.
  • 9David Adalsteinsson,James A. Sethian.A Fast Level Set Method for Propagating Interfaces[J].Journal of Computational Physics.1995(2)
  • 10吴晓红,罗代升,王正勇,唐伟力,赵文彬.基于边缘流的多尺度水平集砾岩图像分割[J].四川大学学报(工程科学版),2008,40(1):133-137. 被引量:5

共引文献30

同被引文献54

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部