期刊文献+

卫星通信资源覆盖率优化调度仿真研究 被引量:3

Optimal Scheduling of Satellite Communication Resources Coverage
下载PDF
导出
摘要 对VSAT卫星系统进行资源调度优化,可提高网络的传输效率和各业务的服务质量。传统的分配方法主要是基于用户的调度或基于单载波的链路调度,而对于采用MF-TDMA的VSAT卫星通信系统则存在许多弊端,由于未考虑多频通信中的干扰问题,造成资源分配效率低下。针对卫星通信系统中资源覆盖率较低的问题,提出一种基于有向图的最大权重链路调度算法(MWLS),通过建立网络有向图模型,将MF-TDMA资源分配抽象成有向链路的无冲突调度问题,选取权重最大链路优先分配以减少链路冲突。仿真结果表明,采用最大权重链路调度算法能有效减少时隙碎片,提高资源覆盖率。 By optimizing resource scheduling for VSAT satellite system, network transmission efficiency and quality of service of traffic can be improved. The traditional allocation methods are mainly scheduling based on users or link scheduling based on single carrier, which has many disadvantages for VSAT satellite communication system utilizing MF-TDMA because of low resource allocation efficiency without considering the interference between multi-car- rier communications. In order to solve the problem of low resource coverage in satellite communication system, max weight link scheduling based on oriented graph is proposed. Firstly, the resource allocation is abstracted into the problem of link scheduling without conflicts by means of building network model of oriented graph, and then the link with max weight is allocated with priority to reduce the link conflicts. Simulation results verify that the proposed method can effectively reduce the timeslot fragmentation and improve resource coverage.
出处 《计算机仿真》 北大核心 2018年第3期127-131,233,共6页 Computer Simulation
基金 国家自然科学基金委(61301117 61420106008 61671301) 发改委高技([2015]1409) 上海市重点实验室基金(12DZ2272600) 航天联合实验室(USCAST2013-3) 航空基金(20155557006)
关键词 多频通信 资源覆盖率 有向图 最大权重链路调度 Multi-carrier communication Resource coverage Oriented graph Max weight link scheduling
  • 相关文献

参考文献2

二级参考文献21

  • 1YAZDANI N. Multi-frequency Time-division Multiple-access (MF-TDMA) Resource Packing[C]//Proceedingof the Military Communications Conference. SanDiego, CA:IEEE:2008:1-8.
  • 2DIMOPOULOS C, ZALZALA AMS. Recent Developments inEvolutionary Computation for ManufacturingOptimization:Problems, Solutions, and Comparisons[J].IEEE Trans, 2000,4(02) :93-113.
  • 3El BEN A E,ARTS E H, VAN HEE K M. Global Convergenceof Genetic Algorithms: a Infinite MarkovChainanalysis[M]. Berlin:Springer-verlag,1991.
  • 4HOLLAND J H. Adaptive in Natural and ArtificialSystem[M]. Ann Arbor: University of Michigan, 1975.
  • 5SRINIVAS M, PATNAILK L M. Adaptive Probabilitiesof Crossoverand Mutation in Genetic Algorithms [J].IEEE Transaction on System, Man and Cybernetics,1994, 24(04) :656-667.
  • 6HU X B,WU S F. A Self-adaptive Genetic Algorithmbased on Fuzzy Mechani sm[C]//Proceeding ofEvolutionary Computation Conference. Singapore:IEEE:2007:4646-4652.
  • 7ZHANG J, HENRY S H,WAI L L.Clustering-basedAdaptive Crossover and Mutation Probabilities forGenetic Algorithms[J]. IEEE Journals & Magazines,2007, 3(11) :326-335.
  • 8HO C W, LEE K H, LEUNG K S. A Genetic Algorithm basedon Mutation and Crossover with AdaptiveProbabi1it ies[C]//Proceeding of EvolutionaryComputation. Washington, DC:IEEE:1999:1-8.
  • 9LEM0NGE A C C, BARBOSA H J C. A Adaptive PenaltyScheme for Genetic Algorithms in StructuralOptimization[J]. International Journal forNumerical Methods in Engineering, 2004(59):703-736.
  • 10European Telecommunications Standards Institute.GMPRS-101.201v2.2.1General Packet Radio Service:Introduction to the GMR-1 Family[EB/OL].http://pda.etsi.org/exchangefolder/ts_1013760102v020201p.pdf,2005-01-02.

共引文献7

同被引文献29

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部