期刊文献+

关于气象数据检测质量控制仿真 被引量:1

Quality Control Simulation of Meteorological Data Detection
下载PDF
导出
摘要 针对传统气象数据质量控制算法存在的不足,首先提出了一种新的基于兴趣度模型的关联规则挖掘算法,通过真实数据验证表明,新算法不仅能够挖掘出所有相关性很强的规则,同时与同类非Apriori类的算法相比,在时间性能上更加优越。接着通过该关联规则算法挖掘历史气象数据提取出所有关联项对形成范例库,并以此构建气象数据质量控制模型,同时通过测试验证与传统质量控制方法对比,发现基于新的关联规则算法的质量控制模型在检出率和灵敏度以及性能方面得到极大地提高,非常具有可行性。 Aiming at the shortcomings of traditional meteorological data quality control algorithm, a new associa- tion rule mining algorithm b^ed on interestingness is now proposed in the paper. The comparison of experimental data sets with real ones show that the new algorithm is not only able to find all the relevant rules but also more superior to the non Apriori algorithm. Then the new algorithm was adopted to mine the historical meteor'ological data to extract the correlation pairs to form a sample database, and construct the model of the meteorological data quality control. By comparing with the traditional quality control method, it is found that the quality control model based on the new algorithm of association rules can greatly improve detection rate, sensitivity and even time performance. So it is very feasible.
出处 《计算机仿真》 北大核心 2018年第3期303-308,共6页 Computer Simulation
基金 公益性行业(气象)科研专项项目(GYHY201306070) 南京信息工程大学大学生实践创新训练计划项目(201510300202#) 江苏高校品牌专业建设工程资助项目(PPZY2015B134)
关键词 数据挖掘 兴趣度 关联规则 气象数据 质量控制 Data mining Interest Association rules Meteorological data Quality control
  • 相关文献

参考文献6

二级参考文献50

  • 1周焕银,张永,蔺鹏.一种不产生候选项挖掘频繁项集的新算法[J].计算机工程与应用,2004,40(15):182-185. 被引量:14
  • 2郭俊芳,谢益武,周生宝.关联规则相关性的度量[J].计算机应用,2007,27(4):892-893. 被引量:6
  • 3幺枕生 丁裕国.气候统计[M].气象出版社,1990..
  • 4Witten I H.Frank E.Data Mining:Practical Machine Learning Tools and Techniques[M].北京:机械工业出版社,2006.
  • 5Tan Pangning, Steinbach M, Kumar V. Introduction to DataMining[M].北京:人民邮电出版社,2006.
  • 6Agrawal R, Imielinski T, etc. Mining association rules between sets of items in large database [A]. Proc1993 of the ACM SIGMOD conference on management of data. Washington, DC, 1993, 207-216.
  • 7蔡伟杰 张晓辉 朱建秋.关联规则挖掘综述1[EB/OL].http://www.dmgroup.org.cn/lw1.htm,2002.
  • 8Agrawal R,Srikant R. Fast algorithm for mining association rules in large databases. In: Proc. of 20th Int' l Conference on Very Large Databases(VLDB1994),1994. 487~499
  • 9Han J,Pei J, Yin Y. Mining Frequent patterns without candidate generation. ACM SIGMOD, Dallas, Texas, 2000
  • 10Brin S,Motwani R,Silverstein C. Beyond Market Basket: Generalizing Association Rules to Correlation. In: Proc. 1997 ACMSIGMOD Int'l Conf. Management of Data, 1998. 265~276

共引文献264

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部