期刊文献+

云计算环境下网络用户信息资源优化调度 被引量:2

Optimal Scheduling of Network User Information Resources in Cloud Computing Environment
下载PDF
导出
摘要 云计算环境下对网络用户信息资源的优化调度,能够有效实现云计算环境下资源调度的优化。对网络用户信息资源的调度,需要先获得信息资源优化调度任务的总权值,并将其作为参量计算适应度值,完成对信息资源的优化调度。传统方法通过评估形同节点的性能,选取最低成本评估策略,但忽略了获得网络用户信息资源优化调度任务的总权值,导致调度精度偏低。提出基于遗传算法的云计算环境下网络用户信息资源优化调度方法。将信息资源通过虚拟化技术抽象为彼此独立的网络虚拟资源,通过考虑网络带宽、带宽利用率等参数,引入评价模型,依据网络节点情况预测任务执行速度,对不同数据资源的任务集合进行调度安排,获得资源优化调度任务的总权值并将其作为参量计算适应度值。实验结果表明,所提方法在资源调度效率与资源利用率方面具有优势。 This paper proposes a scheduling method for resource optimization of network user information under cloud computing environment based on genetic algorithm. Firstly, the information resources are abstracted into inde- pendent network virtual resources by virtualization technology, and then, evaluation model is introduced by consider- ing network bandwidth and bandwidth utilization, and task sets of different data resources are dispatched in accord- ance with task execution speed predicted by network node situation. Finally, total weight of scheduling task of resource optimization is obtained and taken as fitness value of parameter calculation. The experimental results show that the mentioned method has advantages in aspect of resource scheduling efficiency and resource utilization.
作者 罗南超
出处 《计算机仿真》 北大核心 2018年第3期324-327,共4页 Computer Simulation
基金 四川省教育厅自然科学重点基金资助项目(15ZA0339) 阿坝师范学院校级规划课题(ASB17-04)
关键词 云计算 网络用户信息 资源调度 Cloud computing Network user information Resource scheduling
  • 相关文献

参考文献10

二级参考文献94

  • 1郭浩波,王颖龙,曾辉.采用遗传模拟退火算法研究导弹预警卫星传感器调度[J].电光与控制,2006,13(4):71-74. 被引量:19
  • 2张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139. 被引量:93
  • 3栾丽君,谭立静,牛奔.一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法[J].信息与控制,2007,36(6):708-714. 被引量:70
  • 4Hinton G, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18 (7):1527- 1554.
  • 5Bengio Y,Lamblin P,Popovici D,et al. Greedy layer-wise training of deep networks[J]. Advances in Neural Information Processing Systems, 2007,19:153.
  • 6Salakhutdinov R,Murray I. On the quantitative analysis of deep belief networks [C]//Proceedings of the 25th international conference on Machine learning. ACM, 2008: 872-879.
  • 7Hinton G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation ,2002,14(8): 1771-1800.
  • 8Bearing Data Center. Download a Data File [EB/OL]. http:// csegroups.case file. download -data.
  • 9Chen Y,Lin Z,Zhao X,et al. Deep Learning-Based Classifi- cation of Hyperspectral Data[J]. 2014,7(6):2094-2107.
  • 10Yang J,Zhang D,Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 (1): 131-137.

共引文献126

同被引文献26

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部