摘要
利用直接法将柱KdV方程超对称化.通过适当的变换,利用双线性方法将超对称柱KdV方程双线性化,由超对称Hirota双线性导数法构造出超对称柱KdV方程的单孤子解、双孤子解、三孤子解以及n孤子解的具体表达形式.
The cylindrical Korteweg-de Vries (cKdV) equation can be supersym- metrized by a direct method. Through the variable transformation and bilinear method, the supersymmetrical cKdV equation can be written into the bilinear form. Soliton solutions for the supersymmetrical cKdV equation are derived by the supersymmetrical bilinear derivative.
出处
《应用数学与计算数学学报》
2018年第1期165-172,共8页
Communication on Applied Mathematics and Computation
基金
国家自然科学基金资助项目(11301183)
关键词
超对称柱KdV方程
超对称双线性导数法
孤子解
supersymmetry cylindrical Korteweg-de Vries (cKdV) equation
su- persymmetry bilinear derivative
soliton solution