期刊文献+

压电双材料界面裂纹的强度因子分析

Analysis of intensity factors of interface crack in piezoelectric bimaterials
下载PDF
导出
摘要 为满足实际工程中对求解压电双材料界面裂纹强度因子方法通用性和有效性的要求,基于压电界面断裂力学推导了压电双材料平面及反平面界面裂纹强度因子显示外推公式,通过力电耦合有限元模拟了裂纹尖端附近的位移场和电场,将裂纹尖端后面的裂纹张开位移和电势跃变代入强度因子显示外推公式,求解压电双材料的界面裂纹强度因子。以含中心裂纹压电双材料板为例,对不同载荷、单元数和加密形式下的强度因子进行了讨论,并与解析解作了对比。数值算例结果表明,本文方法具有计算简单、精度高等优点。 In order to meet the requirement of commonality and effectiveness in solving the intensity factors of piezoelectric bimaterials with interface crack in practical engineering,based on piezoelectric interface facture mechanics,an explicit extrapolating formula of intensity factors for in-plane and antiplane interface crack was derived.The interface crack-tip displacement field and electric filed of the piezoelectric bimaterials were simulated using the electromechanical coupling computation methods.Substituting the crack displacement and the electric potential jump at the back of the crack tip into the explicit extrapolating formula,the intensity factors of piezoelectric bimaterials with interface crack were solved.Considering a center interface crack in double piezoelectric plates,the intensity factors under different loadings,different numbers of elements,and different mesh refinement methods were discussed and compared with the analytical solution.Results of numerical examples show that the proposed method has the advantages of simple calculation and high accuracy.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第2期500-506,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(11502092) 吉林省科技厅项目(20160520064JH 20170101043JC) 中央高校基本科研业务费专项项目(451170306066)
关键词 信息处理技术 力电耦合 强度因子 界面裂纹 压电双材料 information processing technology electromechanical coupling intensity factors interracial crack piezoelectric bimaterials
  • 相关文献

参考文献2

二级参考文献15

  • 1Atluri S N , Shen S. The Meshless Local Petrov-Galer- kin (MLPG) Method[M]. Forsyth.. Teeh Science Press, 2002.
  • 2Xie D, Biggers Jr S B. Progressive crack growth analy- sis using interface element based on the virtual crack closure technique[J]. Finite Elements in Analysis and Desigm, 2006,42 (11) : 977-984.
  • 3Rybicki E F, Kanninen M F. A finite element calcula- tion of stress intensity factors by a modified crackelosure integral[J]. Engineering Fracture Mechanics, 1977, 9 (4) :931-938.
  • 4Chen X F, Yang S J, He Z J, et al. The construction of wavelet finite element and its application[J]. Finite Ele- ment in Analysis and Design, 2004,40 (5/6) : 541-554.
  • 5Dong H B, Chen X F, Li B, et al. Rotor crack detec- tion based on high-precision modal parameter identifica- tion method and wavelet finite element model[J]. Me- chanical Systems and Signal Processing, 2009, 23 (3) : 869-883.
  • 6Raju I S. Calculation of strain-energy release rates with high-order and singular finite-elements[J]. Engineering Fracture Mechanics, 1987,28(3) :251-274.
  • 7刘文铤,郑旻仲,费斌军,等.概率断裂力学与概率损伤容限/耐久性[M].北京:北京航空航天大学出版社,1999:103-107.
  • 8Hwang C G, Wawrzynek P A, Ingraffea A R. On the calculation of derivatives of stress intensity factors for multiple cracks [J ]. Engineering Fracture Mechanics,2005, 72: 1171-1196.
  • 9Pitt S, Jones R, Atluri S N. Further studies into interacting 3D cracks[J].Computers and Structures, 1999, 70:583-597.
  • 10Wang L, Brust F W, Atluri S N. The EPFEAM and the prediction of fracture under WFD conditions part Ⅲ: computational predictions of the NIST multiple site damage experimental results[J].Computational Mechanics, 1997, 20: 199-212.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部