期刊文献+

An Efficient Algorithm for Self-consistent Field Theory Calculations of Complex Self-assembled Structures of Block Copolymer Melts

An Efficient Algorithm for Self-consistent Field Theory Calculations of Complex Self-assembled Structures of Block Copolymer Melts
原文传递
导出
摘要 Self-consistent field theory(SCFT), as a state-of-the-art technique for studying the self-assembly of block copolymers, is attracting continuous efforts to improve its accuracy and efficiency. Here we present a fourth-order exponential time differencing Runge-Kutta algorithm(ETDRK4) to solve the modified diffusion equation(MDE) which is the most time-consuming part of a SCFT calculation. By making a careful comparison with currently most efficient and popular algorithms, we demonstrate that the ETDRK4 algorithm significantly reduces the number of chain contour steps in solving the MDE, resulting in a boost of the overall computation efficiency, while it shares the same spatial accuracy with other algorithms. In addition, to demonstrate the power of our ETDRK4 algorithm, we apply it to compute the phase boundaries of the bicontinuous gyroid phase in the strong segregation regime and to verify the existence of the triple point of the O70 phase, the lamellar phase and the cylindrical phase. Self-consistent field theory(SCFT), as a state-of-the-art technique for studying the self-assembly of block copolymers, is attracting continuous efforts to improve its accuracy and efficiency. Here we present a fourth-order exponential time differencing Runge-Kutta algorithm(ETDRK4) to solve the modified diffusion equation(MDE) which is the most time-consuming part of a SCFT calculation. By making a careful comparison with currently most efficient and popular algorithms, we demonstrate that the ETDRK4 algorithm significantly reduces the number of chain contour steps in solving the MDE, resulting in a boost of the overall computation efficiency, while it shares the same spatial accuracy with other algorithms. In addition, to demonstrate the power of our ETDRK4 algorithm, we apply it to compute the phase boundaries of the bicontinuous gyroid phase in the strong segregation regime and to verify the existence of the triple point of the O70 phase, the lamellar phase and the cylindrical phase.
出处 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第4期488-496,共9页 高分子科学(英文版)
基金 financially supported by the China Scholarship Council (No. 201406105018) the National Natural Science Foundation of China (No. 21004013) the National Basic Research Program of China (No. 2011CB605701)
关键词 Block copolymer Self-consistent field theory Algorithm Pseudo-spectral Phase structure Block copolymer Self-consistent field theory Algorithm Pseudo-spectral Phase structure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部