期刊文献+

Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels 被引量:3

Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels
原文传递
导出
摘要 Seed size and composition are important traits in food crops and can be affected by nutrient availability in the soil. Phosphorus (P) is a non-renewable, essential macronutrient, and P deficiency limits soybean (G1ycine max) yield and quality. To investigate the associations of seed traits in low- and high-P environ- ments, soybean recombinant inbred lines (RILs) from a cross of cultivars Fiskeby III and Mandarin (Ottawa) were grown under contrasting P availability environments. Traits including individual seed weight, seed number, and intact mature pod weight were significantly affected by soil P levels and showed transgressive segregation among the RILs. Surprisingly, P treatments did not affect seed composition or weight, suggesting that soybeanmaintains sufficient P in seeds even in Iow-P soil. Quantitative trait loci (QTLs) were detected for seed weight, intact pods, seed volume, and seed protein, with five significant QTLs identified in Iow-P environments and one significant QTL found in the optimaI-P environment. Broad-sense heritability estimates were 0.78 (individual seed weight), o.go (seed protein), 0.34 (seed oil), and 0.98 (seed number). The QTLs identified under low P point to genetic regions that may be useful to improve soybean performance under limiting P conditions. Seed size and composition are important traits in food crops and can be affected by nutrient availability in the soil. Phosphorus (P) is a non-renewable, essential macronutrient, and P deficiency limits soybean (G1ycine max) yield and quality. To investigate the associations of seed traits in low- and high-P environ- ments, soybean recombinant inbred lines (RILs) from a cross of cultivars Fiskeby III and Mandarin (Ottawa) were grown under contrasting P availability environments. Traits including individual seed weight, seed number, and intact mature pod weight were significantly affected by soil P levels and showed transgressive segregation among the RILs. Surprisingly, P treatments did not affect seed composition or weight, suggesting that soybeanmaintains sufficient P in seeds even in Iow-P soil. Quantitative trait loci (QTLs) were detected for seed weight, intact pods, seed volume, and seed protein, with five significant QTLs identified in Iow-P environments and one significant QTL found in the optimaI-P environment. Broad-sense heritability estimates were 0.78 (individual seed weight), o.go (seed protein), 0.34 (seed oil), and 0.98 (seed number). The QTLs identified under low P point to genetic regions that may be useful to improve soybean performance under limiting P conditions.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第3期232-241,共10页 植物学报(英文版)
基金 supported by the National Science Foundation grants IOS-1031416 and IOS-1444456 sabbatical leave funding from the Florida Agricultural and Mechanical University
关键词 Qian Qian China National Rice Research Institute China Qian Qian, China National Rice Research Institute, China
  • 相关文献

同被引文献12

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部