期刊文献+

函数型数据支持向量回归

Support vector regression for functional data
原文传递
导出
摘要 函数型数据回归是一个非常有意义的课题.已有工作都是利用平方损失来衡量误差,而本文采用ε-不敏感损失来衡量误差.本文构造基于ε-不敏感损失的逼近元,给出表示形式及其系数计算.逼近元具有鲁棒性和稀疏性等性质.本文的主要结果是,在一些常规条件下建立预测误差收敛阶.与关于平方损失工作相比,我们不要求协方差算子与积分算子之间的"对齐"关系.此外,本文还讨论了支持向量回归函数本身的逼近性质.即使对有限维数据,关于这方面的结果在文献中也尚未见到. Linear regression for functional data is an important topic. While the existing works are devoted to the regularized least square regression, this paper considers regularized regression with ε-insensitive loss. The approximation element is constructed based on samples and ε-insensitive loss. Under some mild assumptions, we establish a convergence rate as the number of size of samples tends to infinity. Moreover, the approximation of the function itself constructed by support vector regression is discussed. We have not been aware of such result even for finite-dimensional data.
作者 陈珩 陈迪荣 黄尉 Heng Chen,Dirong Chen,Wei Huang
出处 《中国科学:数学》 CSCD 北大核心 2018年第3期409-418,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11501380 11571267和91538112)资助项目
关键词 函数型数据 ε-不敏感损失 支持向量回归 逼近度 覆盖数 functional data, ε-insensitive loss, support vector regression learning rate covering number
  • 相关文献

参考文献3

二级参考文献55

  • 1Aronszajn N. Theory of reproducing kernels. Trans Amer Math Soc, 1950, 68:337-404.
  • 2Belkin M, Niyogi P. Semi-supervised learning on riemannian manifolds. Machine Learning, 2004, 56:209-239.
  • 3Belkin M, Niyogi P. Towards a theoretical foundation for Laplacian-based manifold methods. J Comput System Sci, 2008, 74:1289-1308.
  • 4Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res, 2006, 7:2399-2434.
  • 5Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts. In: Proceedings of the 18th International Conference on Machine Learning. Waltham: Morgan Kaufmann Publishers Inc., 2001, 19-26.
  • 6Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proceedings of the llth Annual Conference on Computational Learning Theory. New York: ACM, 1998, 92-100.
  • 7Cao Y, Chen D-R. Consistency of regularized spectral clustering. Appl Comput Harmon Anal, 2010, 30:319-336.
  • 8Cucker F, Smale S. On the mathematical foundations of learning. Bull Amer Math Soc, 2002, 39:1-50.
  • 9Cucker F, Zhou D-X. Learning Theory: An Approximation Theory Viewpoint. Cambridge: Cambridge University Press, 2007.
  • 10Johnson R, Zhang T. On the effectiveness of Laplacian normalization for graph semi-supervised learning. J Mach Learn Res, 2007, 8:1489-1517.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部